
Object-Oriented Programming in C++ (SS 2024)
Exercise 5: June 6, 2024

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

February 5, 2024

The exercise is to be submitted by the denoted deadline via the submission interface of the Moodle
course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise and
MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indentations
are appropriately preserved) and an appropriate font size such that source code lines do
not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution has
unwanted problems or bugs, please document these explicitly (you will get more credit
for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

1



Exercise 5: Recursive Polynomials by Templates

The goal of this exercise is to implement a class whose objects represent polynomials with integer
coefficients, as in Exercise 4. However, in contrast to Exercise 4, the implementation shall now be
based on a class template; thus genericity is achieved by parametric polymorphism rather than by
inheritance.

In detail, your tasks are as follows:

1. First implement a class template template<class Ring> class RecPoly such that the
objects of the resulting class represent univariate polynomials over the parameter domain Ring.

The parameter Ring is assumed to denote any class that provides the same operations as the
class Ring of Exercise 4 (please note that Ring denotes here a formal parameter, the class
Ring of Exercise 4 is not needed in this exercise). The representation and functionality of
class template RecPoly is analogous to that of the class of Exercise 4. However, since the
class resulting from the instantiation of this template is is not designed for inheritance with
overriding, the operations need not be virtual.

2. Next, use class template RecPoly and class Integer (you may use the same class as in the
previous exercise) to create by the definition

typedef RecPoly<Integer> UnivariatePoly;

a type UnivariatePoly that implement univariate polynomials with integer coefficients.
This class shall have the same functionality as the corresponding class of Exercise 4.

3. Finally, create by the definition

typedef RecPoly<UnivariatePoly> BivariatePoly;

a type BivariatePoly that implements bivariate polynomials with integer coefficients. This
class shall have the same functionality as the corresponding class of Exercise 4.

Test both types in the same way as in Exercise 4.

2


