A generic approach to
proximity-based matchlng

Maximilian Donnermair



FEEDBACK

* Titel vllt anpassen, wobei ,,generality” eh an sich passt

* Symbol vs constant vs term vs function

* Semantics of variables; deltas are set of variables, syntactically
e Dv ,function” erklaren!

 Sinn hinter deltas erklaren!



Problem statement

« Quantitative Matching

* Given A-threshold and proximity degrees between ground terms
e Goal: M;0:1=>0;:S;6with 6 > A
* M: set of problems, e.g.: f(x,x) < g(a,b), S: {x —» 7}

* Proximity calculations with T-Norms (Triangular Norms)
* @ instead of A

» Current matching algorithm: only with Minimum-T-Norm
e x @y =min(x,y)

« Goal: generalizing inference rules



~Standard” Inference rules

* Decompose: transform {f (t, ..., t;,) < g(s4, ..., S,)}into
{t;<s;|1<i<n}
* Proximity of functions R(f, g) gets ,added” to final proximity degree
 Clash rule (exception): different arity, proximity too low

Sol X = 1
olve: {x < t}:"{xf\/pc(t)

* pc(t) = {(s,a)|R(t,s) = a}
 Clash rule (exception): proximity class of some (sub)term is empty
* Merge: transform {x = pc(t),x = pc(s)}into {x = pc(t) N pc(s)}
* |Intersection of proximity classes
* Clash rule (exception): t and s don‘t have same tree structure

} (Branching vs Compact representation)



Example

* M = {f(x,x) <3205 g(a, b)} with
a=ggC,b=pggcCc,a=g, b f=p79

* Decompose into {x < a,x < b}
e ,Branching” method: Solve one, instantiate, then decompose
e ,Compact” method: Solve both, then merge

* Approximation degree decreases over time

* New implicit approach: A-threshold increases
* We get a set of degree constraints for the variables



New inference rules
Dec: Decomposition

{f(tl?"' ’tﬂ.) —_<6 9(31,- --,s']u)} EHM; S; A@(S 2 A T
MU{t; 25, 5|1 <i<n}; S5 A® (R, ) = Reso(R(f,9),A)

if n = m and where n > 0; and 4,,...,4d,, arc fresh degree variables.

“Sol: Solve
{r <5t}wM; S, &®6>,\ =
M; S'U{:rmext () =: t%}; A @ (Q,e Pos(h) dv(t®,p)) > A

Mer: Merge
M; SW {x = ext‘,sé’,\(t) =: {% z ext%’,\(s) =: g%}

A ® (®pepos(t) dv(t’, p)) ® (®pepos(8) dv(s’,p)) =

» SU {z & t% Ns%}; A®(R,cpos Ty = A

where Pos = Pos(t) = Pos(s) and v, := dv(t®,p) ® dv(s®*, p)).




Term extensions

* Because proximity classes are not compact enough

* [pe(f(a,b))| = Ipc(H) * Ipc(@)] * |pc(b)]

* {f(a,b),f(a,c),f(a,a),f(b,a),f(D,b),..,g(a,b),g(a,c),..}
ext(f(a,b))| = Ipc(HI + Ipc(@)] + |pc(b)|

* {f,9}a, b, c},1a, b, c})

* Here without approximation degrees

* Intersection of classes position-wise



Example
* {f (fOo3),9(v.0,h(x))) <6 h(F (b, g (b)), h(f(€), b, g(c)))}

* Decompose several times

*{x<by=<gb)y=<f(c)a<bx<c}
e Solve (4x)

e {x = ext(b) ={(a, 0.95),(b,1),(c,0.75)},
x = ext(c) = {(a,0.85),(b,75),(c,1)},
y = ext(g (1)) = {(f,0.7), (g, 1), (h, 0.8)}({(a, 0.95), (b, 1), (¢, 0.75)}),
y = ext(f(©)) = {(f, 1), (g,0.7), (h,0.9)}({(a, 0.85), (b, 0.75), (¢, D})}

* Merge twice

« {x = {(a,0.95 ® 0.85), (b, 1 ® 0.75), (c,0.75 ® 1)},
y=1{(f,0.7 1),(9,1®0.7),(h,08 0.9)}
({(a,0.95 @ 0.85),(b,1 ® 0.75),(c,0.75 Q 1)})}



Conclusion

* Sound-/Completeness proofs will determine
completeness of Clash rules

* Improving/Simplifying constraint management
e worst case”“ method
 eliminating unsatisfiable instantiations early on

* Anti-unification
e  Fully fuzzy” signatures



