A generic approach to proximity-based matching

Maximilian Donnermair

FEEDBACK

- Titel vllt anpassen, wobei "generality" eh an sich passt
- Symbol vs constant vs term vs function
- Semantics of variables; deltas are set of variables, syntactically
- Dv "function" erklären!
- Sinn hinter deltas erklären!

Problem statement

- Quantitative Matching
 - Given λ -threshold and proximity degrees between ground terms
 - Goal: M; \emptyset ; $1 \Rightarrow \emptyset$; S; δ with $\delta \geq \lambda$
 - M: set of problems, e.g.: $f(x,x) \le g(a,b)$, S: $\{x \mapsto ?\}$
- Proximity calculations with T-Norms (Triangular Norms)
 - ⊗ instead of ∧
- Current matching algorithm: only with Minimum-T-Norm
 - $x \otimes y = \min(x, y)$
- Goal: generalizing inference rules

"Standard" Inference rules

- **Decompose**: transform $\{f(t_1, ..., t_n) \leq g(s_1, ..., s_n)\}$ into $\{t_i \leq s_i | 1 \leq i \leq n\}$
 - Proximity of functions R(f,g) gets "added" to final proximity degree
 - Clash rule (exception): different arity, proximity too low
- Solve: $\{x \le t\} \Rightarrow \begin{cases} x \mapsto t_0 \\ x \approx pc(t) \end{cases}$ (Branching vs Compact representation)
 - $pc(t) := \{(s, \alpha) | R(t, s) \ge \alpha\}$
 - Clash rule (exception): proximity class of some (sub)term is empty
- Merge: transform $\{x \approx pc(t), x \approx pc(s)\}\$ into $\{x \approx pc(t) \cap pc(s)\}\$
 - Intersection of proximity classes
 - Clash rule (exception): t and s don't have same tree structure

Example

- $M \coloneqq \{f(x,x) \leq_{\lambda=0.5} g(a,b)\}$ with $a \approx_{0.8} c, b \approx_{0.9} c, a \approx_{0.2} b, f \approx_{0.7} g$
 - Decompose into $\{x \le a, x \le b\}$
 - "Branching" method: Solve one, instantiate, then decompose
 - "Compact" method: Solve both, then merge
- Approximation degree decreases over time

- New implicit approach: λ -threshold increases
 - We get a set of degree constraints for the variables

New inference rules

Dec: Decomposition

$$\{f(t_1,\ldots,t_n) \preceq_{\delta} g(s_1,\ldots,s_m)\} \uplus M; \ S; \ \Delta \otimes \delta \geq \lambda \implies M \cup \{t_i \preceq_{\delta_i} s_i \mid 1 \leq i \leq n\}; \ S; \ \Delta \otimes (\bigotimes_{i=1}^n \delta_i) \geq Res_{\otimes}(\mathcal{R}(f,g),\lambda)$$

if n = m and where $n \ge 0$; and $\delta_1, \ldots, \delta_n$ are fresh degree variables.

Sol: Solve

$$\{x \leq_{\delta} t\} \uplus M; \ S; \ \Delta \otimes \delta \geq \lambda \implies M; \ S \cup \{x \approx \mathbf{ext}_{\mathcal{R},\lambda}^{\delta}(t) =: \mathbf{t}^{\delta}\}; \ \Delta \otimes (\bigotimes_{p \in Pos(t)} dv(\mathbf{t}^{\delta}, p)) \geq \lambda$$

Mer: Merge

$$\begin{array}{l} M; \ S \uplus \{x \approx \operatorname{ext}_{\mathcal{R},\lambda}^{\delta_t}(t) =: \mathbf{t}^{\delta_t}, x \approx \operatorname{ext}_{\mathcal{R},\lambda}^{\delta_s}(s) =: \mathbf{s}^{\delta_s}\}; \\ \Delta \otimes (\bigotimes_{p \in Pos(t)} dv(\mathbf{t}^{\delta_t}, p)) \otimes (\bigotimes_{p \in Pos(s)} dv(\mathbf{s}^{\delta_s}, p)) \implies \\ M; \ S \cup \{x \approx \mathbf{t}^{\delta_t} \sqcap \mathbf{s}^{\delta_s}\}; \ \Delta \otimes (\bigotimes_{p \in Pos} \gamma_p^x \geq \lambda \end{array}$$

where Pos = Pos(t) = Pos(s) and $\gamma_p^x := dv(\mathbf{t}^{\delta_t}, p) \otimes dv(\mathbf{s}^{\delta_s}, p)$.

Term extensions

- Because proximity classes are not compact enough
- |pc(f(a,b))| = |pc(f)| * |pc(a)| * |pc(b)|• $\{f(a,b), f(a,c), f(a,a), f(b,a), f(b,b), ..., g(a,b), g(a,c), ...\}$
- |ext(f(a,b))| = |pc(f)| + |pc(a)| + |pc(b)|• $\{f,g\}(\{a,b,c\},\{a,b,c\})$
- Here without approximation degrees
- Intersection of classes position-wise

Example

```
• \{f\left(f(x,y),g\left(y,a,h(x)\right)\right)\leqslant_{\delta}h(f(b,g(b)),h(f(c),b,g(c)))\}

• Decompose several times

• \{x\leqslant b,y\leqslant g(b),y\leqslant f(c),a\leqslant b,x\leqslant c\}

• Solve (4x)
```

•
$$\{x = ext(b) = \{(a, 0.95), (b, 1), (c, 0.75)\},\ x = ext(c) = \{(a, 0.85), (b, 75), (c, 1)\},\ y = ext(g(b)) = \{(f, 0.7), (g, 1), (h, 0.8)\}(\{(a, 0.95), (b, 1), (c, 0.75)\}),\ y = ext(f(c)) = \{(f, 1), (g, 0.7), (h, 0.9)\}(\{(a, 0.85), (b, 0.75), (c, 1)\})\}$$

Merge twice

•
$$\{x = \{(a, 0.95 \otimes 0.85), (b, 1 \otimes 0.75), (c, 0.75 \otimes 1)\},\ y = \{(f, 0.7 \otimes 1), (g, 1 \otimes 0.7), (h, 0.8 \otimes 0.9)\}\ (\{(a, 0.95 \otimes 0.85), (b, 1 \otimes 0.75), (c, 0.75 \otimes 1)\})\}$$

Conclusion

 Sound-/Completeness proofs will determine completeness of Clash rules

- Improving/Simplifying constraint management
 - "worst case" method
 - eliminating unsatisfiable instantiations early on

- Anti-unification
- "Fully fuzzy" signatures