
A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover

Implementation

Further Work

A Saturation-Based Automated Theorem
Prover for RISCAL

Viktoria Langenreither

28.11.2023



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover

Implementation

Further Work

Goals of this Thesis

• extension of RISCTP/RISCAL by a saturation-based
automated theorem prover for first-order logic with
equality
• the theoretical basis for such a prover and the support

for special theories (integer and arrays)
• implementation of the prover
• experiments and tests with the prover
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Goals of this Presentation

• presentation of the plans (design) for our prover
• show pieces of the implementation
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Strategy of our Prover

• variant of the superposition calculus with literal
selection (like the E Prover)
• given clause algorithm

• proof state represented by sets of processed and
unprocessed clauses

• at each traversal of main loop, a given clause c gets picks
• no unprocessed clauses left means the input set is

satisfiable
• if c is the empty clause, the unsatisfiability has been shown
• all possible generating inferences between c and processed

clauses get computed
• Discount loop

• passive clauses never participate in simplifications
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Design of our Prover

1: while U 6= ∅ begin
2: c := select_best(U)
3: U := U \ {c}; simplify(c, P)
4: if not redundant(c, P) then
5: if c is the empty clause then
6: success; clause set is unsatisfiable
7: else T = ∅
8: for each p ∈ P do
9: simplify(p, (P \ {p}) ∪ {c})
10: done
11: T := T∪ generate(c, P)
12: for each p ∈ T do
13: p := cheap_simplify(p, P)
14: if not trivial(p, P) then
15: U := U ∪ {p}
16: fi
17: done
18: fi
19: fi
20: end
21: Failure: Initial U is satisfiable, P describes model
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select_best(U)
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select_best(U) — Clauseweight

• most common evaluation functions are based on
symbole counting
• return number of function symbols and variables

(possibly weighted in some way) of a clause
• preferring clauses with a small number of symbols

Why is this approach successful?
• small clauses are typically more general than larger

clauses
• smaller clauses usually have fewer potential inference

positions — processing smaller clauses is more efficient
• clauses with fewer literal are more likely to degenerate

into the empty clause by appropriate contracting
inferences
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select_best(U) — FIFOweight

• first-in first-out strategy
• new clauses are processed in the same order in which

they are generated
• evaluation function simply returns the value of a

counter that is incremented for each new clause
• pure FIFO performs very badly

Remark
If we ignore contraction rules, this heuristic will always find
the shortest possible proofs (by inference depth), since it
enumerates clauses in order of increasing depth.
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simplify

1 deletion of duplicated literals
s = t ∨ s = t ∨ R

s = t ∨ R
2 deletion of resolved literals

s 6= s ∨ R
R

3 syntactic tautology deletion
s = s ∨ R

s = t ∨ s 6= t ∨ R
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simplify

1 semantic tautology deletion
s1 6= t1 ∨ . . . ∨ sn 6= tn ∨ s = t ∨ R

if σ(s1 = t1), . . . , σ(sn = tn) |= σ(s = t), where the substitution σ

maps all variables to distinct new constants.
2 destructive equality resolution

x 6= s ∨ R
σ(R)

if x ∈ V and σ = mgu(x , s).
3 clause subsumption

T R ∨ S
T

if σ(T ) = S for a substitution σ.
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redundant

1 clause subsumption
2 semantic tautology deletion
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generate

1
s 6= t ∨ R (Equality resolution)

σ(R)

where σ = mgu(s, t) and σ(s 6= t) is eligible for resolution.

2
s = t ∨ S u 6= v ∨ R (Superposition into negative literals)
σ(u[p ← t ] 6= v ∨ S ∨ R)

where σ = mgu(u|p , s), σ(s) ≥ σ(t), σ(u) ≥ σ(v), σ(s 6= t) is eligible
for paramodulation, σ(u 6= v) is eligible for resolution and u|p /∈ V .

3
s = t ∨ S u = v ∨ R (Superposition into positive literals)
σ(u[p ← t ] = v ∨ S ∨ R)

where σ = mgu(u|p , s), σ(s) ≥ σ(t), σ(u) ≥ σ(v), σ(s 6= t) is eligible
for paramodulation, σ(u 6= v) is eligible for resolution and u|p /∈ V .

4
s = t ∨ u = v ∨ R (Equality factoring)

σ(t 6= v ∨ u = v ∨ R)

where σ = mgu(s, u), σ(s) ≥ σ(t) and σ(s 6= t) is eligible for
paramodulation.
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Further Work

What we have done so far:
• State of the art
• Throughout theoretical representation of the concepts

needed for the prover
• Collecting strategies to make those concepts

reasonably efficient
• Design of the prover

What we are doing now:
• Implementation of the prover
• Test the prover
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