Viktoria Langenreither

Our Prover

Further Work

A Saturation-Based Automated Theorem Prover for RISCAL

Viktoria Langenreither

28.11.2023

Viktoria Langenreither

Our Prover

 extension of RISCTP/RISCAL by a saturation-based automated theorem prover for first-order logic with equality

Goals of this Thesis

- the theoretical basis for such a prover and the support for special theories (integer and arrays)
- implementation of the prover
- experiments and tests with the prover

Viktoria Langenreither

Our Prover

Implementation

Further Work

Goals of this Presentation

- presentation of the plans (design) for our prover
- show pieces of the implementation

Viktoria Langenreither

Our Prover

Implementation

Further Work

Strategy of our Prover

- variant of the superposition calculus with literal selection (like the E Prover)
- given clause algorithm
 - proof state represented by sets of processed and unprocessed clauses
 - at each traversal of main loop, a given clause c gets picks
 - no unprocessed clauses left means the input set is satisfiable
 - if c is the empty clause, the unsatisfiability has been shown
 - all possible generating inferences between *c* and processed clauses get computed

- Discount loop
 - passive clauses never participate in simplifications

Viktoria Langenreither

Our Prover Implementatio

Further Work

Design of our Prover

1: while $U \neq \emptyset$ begin c := select best(U)2: $U := U \setminus \{c\}$; simplify(c, P)3: 4: if not redundant(c, P) then 5: if c is the empty clause then 6: 7: 8: success; clause set is unsatisfiable else $T = \emptyset$ for each $p \in P$ do 9: simplify $(p, (P \setminus \{p\}) \cup \{c\})$ 10: done 11: $T := T \cup \text{generate}(c, P)$ 12: for each $p \in T$ do 13: $p := cheap_simplify(p, P)$ 14: if not trivial(p, P) then $U := U \cup \{p\}$ 15: 16: 17: 18: 19: fi done fi end Failure: Initial U is satisfiable. P describes model

select_best(U)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

RISCAL Viktoria Langenreither

A Saturation-Based

Automated Theorem Prover for

Our Prover

Implementation

Further Work

- 1: function select_best(U)
 - 2: $e := \min_{\geq E} \{ eval(c) | c \in U \}$
 - 3: select c arbitrarily from $\{c \in U | eval(c) = e\}$
 - 4: return c

Fig. 2. A simple *select_best()* function

Viktoria Langenreither

Our Prover

Implementation

Further Work

$select_best(U)$ — Clauseweight

- most common evaluation functions are based on *symbole counting*
- return number of function symbols and variables (possibly weighted in some way) of a clause
- preferring clauses with a small number of symbols

Why is this approach successful?

- small clauses are typically more general than larger clauses
- smaller clauses usually have fewer potential inference positions — processing smaller clauses is more efficient
- clauses with fewer literal are more likely to degenerate into the empty clause by appropriate contracting inferences

Viktoria Langenreither

Our Prover

Implementation

Further Work

$select_best(U) - FIFOweight$

- *first-in first-out* strategy
- new clauses are processed in the same order in which they are generated
- evaluation function simply returns the value of a counter that is incremented for each new clause
- pure FIFO performs very badly

Remark

If we ignore contraction rules, this heuristic will always find the shortest possible proofs (by inference depth), since it enumerates clauses in order of increasing depth.

simplify

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prover for RISCAL Viktoria Langenreither

A Saturation-Based

Automated Theorem

Our Prover

Implementation

Further Work

1 deletion of duplicated literals $\frac{s = t \lor s = t \lor R}{s = t \lor R}$ 2 deletion of resolved literals $\frac{s \neq s \lor R}{R}$ 3 syntactic tautology deletion $\frac{s = s \lor R}{s = t \lor s \neq t \lor R}$

simplify

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

RISCAL Viktoria Langenreither

A Saturation-Based

Automated Theorem Prover for

Our Prover

Implementation

Further Work

1 semantic tautology deletion

$$s_1 \neq t_1 \lor \ldots \lor s_n \neq t_n \lor s = t \lor R$$

if σ(s₁ = t₁),..., σ(s_n = t_n) ⊨ σ(s = t), where the substitution σ maps all variables to distinct new constants.
2 destructive equality resolution

$$\frac{x \neq s \lor R}{\sigma(R)}$$

if $x \in V$ and $\sigma = mgu(x, s)$.

3 clause subsumption

$$\begin{array}{c|c} T & R \lor S \\ \hline T \\ \end{array}$$

if $\sigma(T) = S$ for a substitution σ .

redundant

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Prover for RISCAL Viktoria Langenreither

A Saturation-Based

Automated Theorem

Our Prover

Implementation

Further Work

1 clause subsumption

2 semantic tautology deletion

generate

 $\frac{s \neq t \lor R}{\sigma(R)}$ (Equality resolution) where $\sigma = mgu(s, t)$ and $\sigma(s \neq t)$ is eligible for resolution. 2 $\frac{s = t \lor S}{\sigma(u[n \leftarrow t] \neq v \lor S \lor R)}$ (Superposition into negative literals) where $\sigma = \max(u|_{p}, s), \sigma(s) \ge \sigma(t), \sigma(u) \ge \sigma(v), \sigma(s \ne t)$ is eligible for paramodulation, $\sigma(u \neq v)$ is eligible for resolution and $u|_p \notin V$. $3 \quad \frac{s = t \lor S \quad u = v \lor R}{\sigma(u[p \leftarrow t] = v \lor S \lor R)}$ (Superposition into positive literals) where $\sigma = mgu(u|_{p}, s), \sigma(s) \ge \sigma(t), \sigma(u) \ge \sigma(v), \sigma(s \ne t)$ is eligible for paramodulation, $\sigma(u \neq v)$ is eligible for resolution and $u|_p \notin V$. $4 \quad \frac{s = t \lor u = v \lor R}{\sigma(t \neq v \lor u = v \lor R)}$ (Equality factoring) where $\sigma = mgu(s, u), \sigma(s) > \sigma(t)$ and $\sigma(s \neq t)$ is eligible for

paramodulation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A Saturation-Based Automated Theorem Prover for RISCAL

Viktoria Langenreither

Our Prover

Implementation

Further Work

Further Work

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What we have done so far:

- State of the art
- Throughout theoretical representation of the concepts needed for the prover
- Collecting strategies to make those concepts reasonably efficient
- Design of the prover

What we are doing now:

- Implementation of the prover
- Test the prover

Langenreither

A Saturation-Based

Automated Theorem Prover for RISCAL Viktoria

Implementation

Further Work

References

- A Saturation-Based Automated Theorem Prover for RISCAL
- Viktoria Langenreither
- Our Prover
- Implementation
- Further Work
- Alexandre Riazanov and Andrei Voronkov. Limited resource strategyy in resolution theorem proving. Journal of Symbolic Computation. Oxford Road, Manchester M13 9PL, UK: Department of Computer Science, University of Manchester, 2003, pp. 101–115. doi: 10. 1016/S0747-7171(03)00040-3.
- Stephan Schulz. "Learning Search Control Knowledge for Equational Theorem Proving". In: KI 2001: Advances in Artificial Intelligence. Ed. by Franz Baader, Gerhard Brewka, and Thomas Eiter. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 320–334. isbn: 978-3-540-45422-9. doi: 10.1007/3-540-45422-5_23.
- Laura Kovacs and Andrei Voronkov. "First-Order Theorem Proving and VAMPIRE". In: Computer Aided Verification. Springer, Berlin, Heidelberg, 2013, pp. 1–35. doi: 10.1007/978-3-642-39799-8_1
- Stefan Schulz. "E a brainiac theorem prover". In: vol. 15. Al Communication, 2002, pp. 111–126. doi: 10.5555/1218615.1218621.