THE RISCTP SOFTWARE
Equality and Theory Support for the MESON Prover

4

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz, Austria

J z JOHANNES KEPLER
UNIVERSITY LINZ

The RISCTP Language

// problem file "arrays.txt"
const N:Nat; axiom posN <& N > 0;
type Index = Nat with value < N;
type Value; type Elem = Tuple[Int,Value]; type Array = Map[Index,Elem];
fun key(e:Elem):Int = e.1;
pred sorted(a:Array,from:Index,to:Index) &
Vi:Index,j:Index. from < i A 1 < j A j < to = key(alil) < key(aljl);
theorem T &
Va:Array,from:Index,to:Index,x:Int.
from < to A sorted(a,from,to) =
// let i = (from+to)/2 in
let i = choose i:Index with from < i A i < to in
key(ali]l) < x = —3j:Index. from < j A j < i A key(aljl) = x;

Typed variant of first-order logic with equality and the theories of integers, maps
(functional arrays with extensionality), algebraic data types (including tuples).

111

MESON: Model Elimination, Subgoal-Oriented

e Rules: asetofclauses F = {(Vx) (A1 A...AAg>0 = B1 V...V Bp>q),...}.
o Atoms (positive literals) A1, ...,Aq, B1,...,Bp.
e Goal: a negated clause G = (3y) (G1 A ... AGgsp).
o Positive/negative literals G1 A ... A Gg.
e Judgment F + G:is (F = G) valid?
o Can be reduced to judgment F rg G.
o F+Ls G: (F A Ls = G)o is valid (with variable substitution o and literal set Ls).

Ls={L,...} G1o0 and Lo have mgu oy
FrLs (Gan...AGy)

oog

(AX)

FrlsT FrLs (Gi AGan...AGy)

(ASS)

F={C,...} C=(L1V...VLiV...VLagyp) G=(G1AG2A...NGg)
oy is a bijective renaming of the variables in C o such that C o-oy and G o- have no common variables
L; o 09 and G0 have mgu o

. LsU{G1} 57— T T T .
F hr}l{,(r}} (Ly Ao ALiy ALt Ao ALayp) F e 5 (Gan...AGy)

MESON
Fils G ()

A generalization of Prolog-like “backward chaining” to full first-order logic. /1

Proof Search

An implementation of the calculus (implicitly) constructs a proof tree (below the
special case of Prolog-like Horn clauses is depicted):

30 (T=B1) B% (T = B2) Dll (T=D1) D% (T= Ds) Fl (T F) & (T=)

o Bi= A (B2 Ag) o (D120 o (D220 = (Fi=E1) = (F2= Es)

2 0 0 0 o2 (A1 /\A2:>G1) = =2 (CI/\C2:>G1) 2 (El /\E2:>G1)
G Go Gs

e Solving substitution o: determined during the construction of the tree.
o Starting with o = 0, rule (MESON) chooses for every node some rule and extends o
e Completeness of the proof search.
o All possible rule choices have to be considered; this requires a suitable organization of
the construction process.
e Strategy applied in RISCTP:
o Clauses are ordered according to their introduction in the proof problem file; later clauses
are likely to represent higher-level “lemmas” and are tried first.

An intuitively understandable strategy. 311

MESON Theory Support

e Integration of SMT Solver
o Decide F +L* G; by showing the unsatisfiability of (Ls A =G;)o .
o Slow and actually only effective if the proof decomposition is guided by
appropriate theory axioms (not discussed further).

e Equality Reasoning
o Add axiom F +L5 (1 =1).
o Apply paramodulation-style rewriting to goal literal.
e Axiomatization of Theories
o Add axioms to (completely or incompletely) characterize the underlying theories.

All three extensions have been implemented in RISCTP.

4/11

Paramodulation-Style Rewriting

A natural adaptation of rule (MESON).

F={C,...} C=(L1V...V(I=7r)V...VLgp) G=(G[t]ANGaA...AGyg)
o is a bijective renaming of the variables in C o such that C o-oy and G o- have no common variables
toop and lo have mgu o
(Li Ao ALia ALt Ao ALayp) F k5 5 (Gilr] AGa AL AGyg)

Fils G

Ls
F Foogo

(PARA)

L{[t]: literal L with subterm z.

Also applicable for C= (L1 V...V (r=1) V...V Lyp).

5/11

Rewriting Control

Uncontrolled rewriting lets space of proof search quickly explode.

e Avoid rewrite cycles: If t; has been rewritten to ¢2, do not rewrite 75 to 11 in same proof branch
e Prohibit variable rewrites: do not apply rule to rewrite variable x to some term ¢.
e Restrict rewrite positions: only apply rules to term positions in G; (not in G;0).

e Direct equations: do not apply ! = r if r > [for a variant of lexicographic path order:
o lewar(ryandl #r.

or=f(r,...,rmyandl=g(l,...,l,) and
= r; > [for some i, or
m f>gandr>I;forall j, or
m f=gandr>I[;forall jand (r1,...,7m) >ex (/1. .. 1n).
o We consider f > g iff f was declared in the theory later than g.
o Variant: r > f(z) if ¢ is of an algebraic data type and f is a selector of that type.

Various settings: “None” (no rewriting), “Min” (rewriting with all restrictions), “Med”

(do not restrict rewrite positions), “Max” (also do not direct equations and do not

prohibit rewriting into variables). 6/11

Axiomatization of Theories of Structured Types

e Arrays:
Vai,az. (Vi. a1[i] = a2[i]) = a1 = as
Va,i.e.ali— e]li] =e
Va,i,j,e.i# j = ali— e][j] =alj]

e Tuples:
Vx1,x2,y1,¥2. (¥1,x2) = (y1,y2) = X1 =x2 Ay1 = y2
Vx1,x9. {(x1,x2).1 =x1
Vx1,x9. (x1,x2).2 = x9
Vt,x1. (twith .1 =x1).1=x1
Vt,x2. (t with .2 = x2).2 = x2

e Algebraic Data Types:
o Tuple types are just a special case.
o Axiomatization of constructor, selecter, tester operations. ..

Axiom forms are tweaked and supplementary axioms are added to simplify proofs.
7/11

Axiomatization of Integers

Necessarily incomplete.

Inspired by axiomatization used in Vampire (cf. thesis of V. Langenreither).

Literals n > 2 are inductively axiomatized as n = n’ + 1 with literal n’ = n — 1.

Preprocessing applied to remove > and >.

Axiomatization of 0,1, +, —, -, =, <, <.

RISCTP tries later axioms first, so order is important.

8/11

Axiomatization of Integers

Int;

’=§0’ (x:Int,y:Int);
7#8§0’ (x:Int,y:Int);
<(x1:Int,x2:Int);
<(x1:Int,x2:Int);
>(x1:Int,x2:Int);
pred >(x1:Int,x2:Int);
type Nat = Int;

const 0:Int;

type
pred
pred
pred
pred
pred

pred ’Nat::type’(value:Int);
axiom def§25 &

Vvalue:Int. (’Nat::type’(value) & (—(value < 0)));
theorem typecheck(Nat)§0 ¢ Jvalue:Int. ’Nat::type’(value);
+(x1:Int,x2:Int):Int;

-(x1:Int,x2:Int):Int;

’-§0’ (x:Int) :Int;

-(x1:Int,x2:Int) :Int;

axiom §comm+ & Vx:Int,y:Int. ’=§0° (x+y,y+x);

axiom §assoc+ & Vx:Int,y:Int,z:Int. ’=§0’° (x+(y+z), (x+y)+2z);
axiom §neut+ & Vx:Int. ’=§0’(x+0,x);

axiom §inv+ & Vx:Int. ’=§0° (x+’-§0°(x),0);

axiom §def- < Vx:Int,y:Int. ’=§0°(x-y,x+’-§0°(y));

axiom §comm* & Vx:Int,y:Int. ’=§0°(x-y,y-x);

axiom §assoc* <& Vx:Int,y:Int,z:Int. ’=§0° (x-(y-z),(x'y)-z);

fun
fun
fun
fun

const 1:Int;
axiom §neut* <& Vx:Int. ’=§0°(x'1,x);
axiom §absorb* & Vx:Int. ’=§0’(x:0,0);
axiom §inv- & Vx:Int. ’=§0’(’-§0’(’-§0°(x)),x);
axiom §distrib- & Vx:Int,y:Int. ’=§0’(’-§0’ (x+y),’-§0’(x)+’-§0’°(y));
axiom §distrib* & Vx:Int,y:Int,z:Int. ’=§0°(x-(y+z), (x-y)+(x-2));
axiom §preserve<* & Vx:Int,y:Int,z:Int.

((x <y) A(0<2)) = ((x2) < (y2)));
axiom §preserve<+ & Vx:Int,y:Int,z:Int. ((x < y) = ((x+z) < (y+2)));
axiom §trans< & Vx:Int,y:Int,z:Int. (((x < y) A (y < 2)) = (x < 2));
axiom §trans<= <& Vx:Int,y:Int,z:Int. (((x < y) A (y £ 2)) = & < 2));
axiom §transi<= & Vx:Int,y:Int,z:Int. (((x < y) A (y <2)) = (x<2));
axiom §trans2<= & Vx:Int,y:Int,z:Int. (((x <y) A (y £ 2)) = (x < 2));
axiom §trichotomy & Vx:Int,y:Int. (((x < y) V (y < x)) V ’=§0°(x,y){*});
axiom §notequal< & Vx:Int,y:Int. (((x <y) V (y < x)) = (=?=§0"(x,y)));
axiom §neqdef <& Vx:Int,y:Int. (°#§0’(x,y) & (-’=§0°(y,x)));
axiom §irrefl2< & Vx:Int,y:Int. (’=§0’(x,y) = (—(x < y)));
axiom §refl<= & Vx:Int,y:Int. (°=§0°(x,y) = (x < y));
axiom §def<= & Vx:Int,y:Int. ((x < y) & (~(y < x)));
axiom §equiv< & Vx:Int,y:Int. ((x < y) & (=(y < (x+1))));
axiom §plusi<= & Vx:Int,y:Int. ((x < y) & ((x+1) < y));
axiom §minusi<= & Vx:Int,y:Int. ((x < y) & (x < (y-1)));
axiom §minusi< & Vx:Int. ((x-1) < x);
axiom §plusi< & Vx:Int. (x < (x+1));
axiom §0<1 & 0 < 1;
axiom §irrefl< & Vx:Int. (—(x < x));

9/11

Preventing Literals as Proof Targets

Clause A1 A Ay = By V Bs.

e Syntactic sugar for an “undirected” disjunction:
-A1V-A2V B1V By
o Each atom becomes target of a proof rule:
As AN=B1 A=By; = =A;
A1 A=Bi A=By = =Ay
A1 N As A =Bs = B
A1 NAs A =By = B
o May lead to proof attempts that are unlikely to succeed.

o Clause A;{x} A A2{*} = By V Bo{*} with atoms marked as “non-goals” {x}.
o Only proof rule: A} A A3 A =B2 = By

axiom §trichotomy & Vx:Int,y:Int. (((x < y) V (y < x)) VvV =80’ (x,y){*});

Sacrifice completeness for efficiency. 10/11

Conclusions

e Effective solutions of various proof problems:

o All equality problems in [Harrison].

o The array and list examples from the RISCTP manual.

o Some more examples on rewriting and basic arithmetic.

o Sometimes competitive with SMT (often slower, also due to iterative deepening).
e Next steps:

o Integration with RISCAL.

o Application to RISCAL verification problems.

o Comparison with Viktoria Langenreither’s work.

https://www.risc. jku.at/research/formal/software/RISCTP

11/11

https://www.risc.jku.at/research/formal/software/RISCTP

