Verifying Java Programs with KeY

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at
Verifying Java Programs

- Extended static checking of Java programs:
 - Even if no error is reported, a program may violate its specification.
 - Unsound calculus for verifying while loops.
 - Even correct programs may trigger error reports:
 - Incomplete calculus for verifying while loops.
 - Incomplete calculus in automatic decision procedure (Simplify).

- Verification of Java programs:
 - Sound verification calculus.
 - Not unfolding of loops, but loop reasoning based on invariants.
 - Loop invariants must be typically provided by user.
 - Automatic generation of verification conditions.
 - From JML-annotated Java program, proof obligations are derived.
 - Human-guided proofs of these conditions (using a proof assistant).
 - Simple conditions automatically proved by automatic procedure.

We will now deal with an integrated environment for this purpose.
The KeY Tool

http://www.key-project.org

- **KeY**: environment for verification of JavaCard programs.
 - Subset of Java for smartcard applications and embedded systems.
 - Universities of Karlsruhe, Koblenz, Chalmers, 1998–
 - “Chapter 16: Formal Verification with KeY: A Tutorial”

- **Specification languages**: OCL and JML.
 - Original: OCL (Object Constraint Language), part of UML standard.
 - Later added: JML (Java Modeling Language).

- **Logical framework**: Dynamic Logic (DL).
 - Successor/generalization of Hoare Logic.
 - Integrated prover with interfaces to external decision procedures.
 - Z3, CVC4, CVC5.

Now only JML is supported as a specification language.
Dynamic Logic

Further development of Hoare Logic to a modal logic.

- **Hoare logic:** two separate kinds of statements.
 - Formulas P, Q constraining program states.
 - Hoare triples $\{P\} C \{Q\}$ constraining state transitions.

- **Dynamic logic:** single kind of statement.

 Predicate logic formulas extended by two kinds of modalities.

 - $[C]Q \iff \neg \langle C \rangle \neg Q$
 - Every state that can be reached by the execution of C satisfies Q.
 - The statement is trivially true, if C does not terminate.

 - $\langle C \rangle Q \iff \neg [C] \neg Q$
 - There exists some state that can be reached by the execution of C and that satisfies Q.
 - The statement is only true, if C terminates.

States and state transitions can be described by DL formulas.
Dynamic Logic versus Hoare Logic

Hoare triple \(\{P\} C \{Q\} \) can be expressed as a DL formula.

- **Partial correctness interpretation:** \(P \implies [C]Q \)
 - If \(P \) holds in the current state and the execution of \(C \) reaches another state, then \(Q \) holds in that state.
 - Equivalent to the partial correctness interpretation of \(\{P\} C \{Q\} \).

- **Total correctness interpretation:** \(P \implies \langle C \rangle Q \)
 - If \(P \) holds in the current state, then there exists another state that can be reached by the execution of \(C \) in which \(Q \) holds.
 - If \(C \) is deterministic, there exists at most one such state; then equivalent to the total correctness interpretation of \(\{P\} C \{Q\} \).

For deterministic programs, the interpretations coincide.
Advantages of Dynamic Logic

Modal formulas can also occur in the context of quantifiers.

- **Hoare Logic:** \(\{ x = a \} \ y := x \cdot x \ \{ x = a \land y = a^2 \} \)

 Use of free mathematical variable \(a \) to denote the “old” value of \(x \).

- **Dynamic logic:** \(\forall a : x = a \Rightarrow [y := x \cdot x] \ x = a \land y = a^2 \)

 Quantifiers can be used to restrict the scopes of mathematical variables across state transitions.

Set of DL formulas is closed under the usual logical operations.
A Calculus for Dynamic Logic

- A core language of commands (non-deterministic):

 \[
 X := T \quad \text{... assignment}
 \]

 \[
 C_1; C_2 \quad \text{... sequential composition}
 \]

 \[
 C_1 \cup C_2 \quad \text{... non-deterministic choice}
 \]

 \[
 C^* \quad \text{... iteration (zero or more times)}
 \]

 \[
 F? \quad \text{... test (blocks if } F \text{ is false)}
 \]

- A high-level language of commands (deterministic):

 \[
 \text{skip} = \text{true?}
 \]

 \[
 \text{abort} = \text{false?}
 \]

 \[
 X := T
 \]

 \[
 C_1; C_2
 \]

 \[
 \text{if } F \text{ then } C_1 \text{ else } C_2 = (F?; C_1) \cup ((\neg F)?; C_2)
 \]

 \[
 \text{if } F \text{ then } C = (F?; C) \cup (\neg F)?
 \]

 \[
 \text{while } F \text{ do } C = (F?; C)^*; (\neg F)?
 \]

A calculus is defined for dynamic logic with the core command language.
A Calculus for Dynamic Logic

- **Basic rules:**
 - Rules for predicate logic extended by general rules for modalities.

- **Command-related rules:**

 \[
 \Gamma \vdash F[T/X] \\
 \Gamma \vdash [X := T]F \\
 \Gamma \vdash [C_1][C_2]F \\
 \Gamma \vdash [C_1; C_2]F \\
 \Gamma \vdash [C_1]F \quad \Gamma \vdash [C_2]F \\
 \Gamma \vdash [C_1 \cup C_2]F \\
 \Gamma \vdash F \Rightarrow [C]F \\
 \Gamma \vdash F \Rightarrow [C^*]F \\
 \Gamma \vdash F \Rightarrow G \\
 \Gamma \vdash [F?]G
 \]

From these, Hoare-like rules for the high-level language can be derived.
Objects and Updates

Calculus has to deal with the pointer semantics of Java objects.

- **Aliasing:** two variables o, o' may refer to the same object.
- Field assignment $o.a := T$ may also affect the value of $o'.a$.
- **Update formulas:** $\{o.a \leftarrow T\} F$
 - Truth value of F in state after the assignment $o.a := T$.
- **Field assignment rule:**
 \[
 \Gamma \vdash \{o.a \leftarrow T\} F \\
 \Gamma \vdash [o.a := T] F
 \]
- **Field access rule:**
 \[
 \Gamma, o = o' \vdash F(T) \\
 \Gamma, o \neq o' \vdash F(o'.a) \\
 \Gamma \vdash \{o.a \leftarrow T\} F(o'.a)
 \]
 - Case distinction depending on whether o and o' refer to same object.
 - Only applied as last resort (after all other rules of the calculus).

Considerable complication of verifications.
The KeY Prover

> KeY &
class SumAndMax {
 int sum; int max;
 /*@ requires (∀ int i;
 @ 0 <= i && i < a.length; 0 <= a[i]);
 @ assignable sum, max;
 @ ensures (∀ int i;
 @ 0 <= i && i < a.length; a[i] <= max);
 @ ensures (a.length > 0 ==> (∃ int i;
 @ 0 <= i && i < a.length; max == a[i]));
 @ ensures sum == (∑ int i;
 @ 0 <= i && i< k; a[i])
 @ ensures sum <= a.length * max;
 @*/
 void sumAndMax(int[] a) {
 sum = 0;
 max = 0;
 int k = 0;
 /*@ loop_invariant
 @ 0 <= k && k <= a.length
 @ && (∀ int i;
 @ 0 <= i && i < k; a[i] <= max)
 @ && (k == 0 ==> max == 0)
 @ && (k > 0 ==> (∃ exists int i;
 @ 0 <= i && i < k; max == a[i]))
 @ && sum == (∑ sum int i;
 @ 0 <= i && i< k; a[i])
 @ && sum <= k * max;
 @ assignable sum, max;
 @ decreases a.length - k;
 @*/
 while (k < a.length) {
 if (max < a[k]) max = a[k];
 sum += a[k];
 k++;
 }
 } }
Generate the proof obligations and choose one for verification.
A Simple Example (Contd’2)

The proof obligation in Dynamic Logic.

Wolfgang Schreiner

http://www.risc.jku.at
A Simple Example (Contd’3)

```plaintext
==>
wellFormed(heap)
& ...
& (( \forall int i;
        ((0 <= i & i < a.length) & inInt(i) -> 0 <= a[i])
        & ((self_25.<inv> & (!a = null))))
-> {heapAtPre_0:=heap || _a:=a}
\<{
  exc_25=null;try {
    self_25.sumAndMax(_a)@SumAndMax;
  } catch (java.lang.Throwable e) { exc_25=e; }
}\> ( (\forall int i;
        ( (0 <= i & i < a.length) & inInt(i) -> a[i] <= self_25.max)
        & (( a.length > 0
            -> \exists int i;
                ( (0 <= i & i < a.length) & inInt(i) & self_25.max = a[i])))
        & (( self_25.sum = javaCastInt(bsum{int i;}(0, a.length, a[i]))
            & (( self_25.sum <= javaMulInt(a.length, self_25.max)
                & self_25.<inv>))))))
        & (exc_25 = null)
        & (\forall Field f;
            \forall java.lang.Object o;
            ( (o, f) \in {(self_25, SumAndMax::$sum)}
                \cup {(self_25, SumAndMax::$max)}
            | !o = null
            & !o.<created>@heapAtPre_0 = TRUE
            | o.f = o.f@heapAtPre_0))
```

Press button “Start/stop automated proof search” (green arrow).
The proof runs through automatically.

Wolfgang Schreiner
http://www.risc.jku.at
Linear Search

/*@ requires a != null;
@ assignable \nothing;
@ ensures
@ (\result == -1 &&
@ \forall int j; 0 <= j && j < a.length; a[j] != x)) ||
@ (0 <= \result && \result < a.length && a[\result] == x &&
@ \forall int j; 0 <= j && j < \result; a[j] != x));
@*/

public static int search(int[] a, int x) {
 int n = a.length; int i = 0; int r = -1;
 /*@ loop_invariant
 @ a != null && n == a.length && 0 <= i && i <= n &&
 @ \forall int j; 0 <= j && j < i; a[j] != x) &&
 @ (r == -1 || (r == i && i < n && a[r] == x));
 @ decreases r == -1 ? n-i : 0;
 @ assignable r, i; // required by KeY, not legal JML
 @*/
 while (r == -1 && i < n) {
 if (a[i] == x) r = i; else i = i+1;
 }
 return r;
}
Linear Search (Contd)

Also this verification is completed automatically.

Wolfgang Schreiner
http://www.risc.jku.at
Proof Structure

- Multiple conditions (Taclet option “javaLoopTreatment::teaching”):
 - Invariant Initially Valid.
 - Body Preserves Invariant.
 - Use Case (on loop exit, invariant implies postcondition).

- If proof fails, elaborate which part causes trouble and potentially correct program, specification, loop annotations.

For a successful proof, in general multiple iterations of automatic proof search (button “Start”) and invocation of separate SMT solvers required (button “Run CVC5”).
Summary

- Various academic approaches to verifying Java(Card) programs.
 - Jive: http://www.pm.inf.ethz.ch/research/jive
 - Mobius: http://kindsoftware.com/products/opensource/Mobius/
- Do not yet scale to verification of full Java applications.
 - General language/program model is too complex.
 - Simplifying assumptions about program may be made.
 - Possibly only special properties may be verified.
- Nevertheless very helpful for reasoning on Java in the small.
 - Much beyond Hoare calculus on programs in toy languages.
 - Probably all examples in this course can be solved automatically by the use of the KeY prover and its integrated SMT solvers.
- Enforce clearer understanding of language features.
 - Perhaps constructs with complex reasoning are not a good idea...

In a not too distant future, customers might demand that some critical code is shipped with formal certificates (correctness proofs)...

Wolfgang Schreiner http://www.risc.jku.at 19/19