Verifying Java Programs with KeY

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at
Extended static checking of Java programs:
- Even if no error is reported, a program may violate its specification.
 - Unsound calculus for verifying while loops.
- Even correct programs may trigger error reports:
 - Incomplete calculus for verifying while loops.
 - Incomplete calculus in automatic decision procedure (Simplify).

Verification of Java programs:
- Sound verification calculus.
 - Not unfolding of loops, but loop reasoning based on invariants.
 - Loop invariants must be typically provided by user.
- Automatic generation of verification conditions.
 - From JML-annotated Java program, proof obligations are derived.
- Human-guided proofs of these conditions (using a proof assistant).
 - Simple conditions automatically proved by automatic procedure.

We will now deal with an integrated environment for this purpose.
The KeY Tool

http://www.key-project.org

- **KeY**: environment for verification of JavaCard programs.
 - Subset of Java for smartcard applications and embedded systems.
 - Universities of Karlsruhe, Koblenz, Chalmers, 1998–
 - “Chapter 16: Formal Verification with KeY: A Tutorial”

- **Specification languages**: OCL and JML.
 - Original: OCL (Object Constraint Language), part of UML standard.
 - Later added: JML (Java Modeling Language).

- **Logical framework**: Dynamic Logic (DL).
 - Successor/generalization of Hoare Logic.
 - Integrated prover with interfaces to external decision procedures.
 - Z3, CVC4.

Now only JML is supported as a specification language.
Dynamic Logic

Further development of Hoare Logic to a modal logic.

- **Hoare logic**: two separate kinds of statements.
 - Formulas P, Q constraining program states.
 - Hoare triples $\{P\}C\{Q\}$ constraining state transitions.
- **Dynamic logic**: single kind of statement.

 Predicate logic formulas extended by two kinds of modalities.

- $[C]Q \iff \neg\langle C \rangle \neg Q$
 - Every state that can be reached by the execution of C satisfies Q.
 - The statement is trivially true, if C does not terminate.

- $\langle C \rangle Q \iff \neg [C] \neg Q$
 - There exists some state that can be reached by the execution of C and that satisfies Q.
 - The statement is only true, if C terminates.

States and state transitions can be described by DL formulas.
Dynamic Logic versus Hoare Logic

Hoare triple \(\{ P \} C \{ Q \} \) can be expressed as a DL formula.

- **Partial correctness interpretation:** \(P \Rightarrow [C]Q \)
 - If \(P \) holds in the current state and the execution of \(C \) reaches another state, then \(Q \) holds in that state.
 - Equivalent to the partial correctness interpretation of \(\{ P \} C \{ Q \} \).

- **Total correctness interpretation:** \(P \Rightarrow \langle C \rangle Q \)
 - If \(P \) holds in the current state, then there exists another state that can be reached by the execution of \(C \) in which \(Q \) holds.
 - If \(C \) is deterministic, there exists at most one such state; then equivalent to the total correctness interpretation of \(\{ P \} C \{ Q \} \).

For deterministic programs, the interpretations coincide.
Advantages of Dynamic Logic

Modal formulas can also occur in the context of quantifiers.

- **Hoare Logic:** \(\{ x = a \} \ y := x \times x \ \{ x = a \land y = a^2 \} \)
 - Use of free mathematical variable \(a \) to denote the “old” value of \(x \).

- **Dynamic logic:** \(\forall a : x = a \Rightarrow [y := x \times x] \ x = a \land y = a^2 \)
 - Quantifiers can be used to restrict the scopes of mathematical variables across state transitions.

Set of DL formulas is closed under the usual logical operations.
A Calculus for Dynamic Logic

- A core language of commands (non-deterministic):
 - \(X := T \) ... assignment
 - \(C_1; C_2 \) ... sequential composition
 - \(C_1 \cup C_2 \) ... non-deterministic choice
 - \(C^* \) ... iteration (zero or more times)
 - \(F? \) ... test (blocks if \(F \) is false)

- A high-level language of commands (deterministic):
 - \(\text{skip} \) = true?
 - \(\text{abort} \) = false?
 - \(X := T \)
 - \(C_1; C_2 \)
 - \(\text{if } F \text{ then } C_1 \text{ else } C_2 \) = \((F?; C_1) \cup ((\neg F)?; C_2)\)
 - \(\text{if } F \text{ then } C \) = \((F?; C) \cup (\neg F)\)?
 - \(\text{while } F \text{ do } C \) = \((F?; C)^*; (\neg F)\)?

A calculus is defined for dynamic logic with the core command language.
A Calculus for Dynamic Logic

- Basic rules:
 - Rules for predicate logic extended by general rules for modalities.

- Command-related rules:

\[
\begin{align*}
 \Gamma \vdash F[T/X] \\
 \Gamma \vdash [X := T]F \\
 \Gamma \vdash [C_1][C_2]F \\
 \Gamma \vdash [C_1; C_2]F \\
 \Gamma \vdash [C_1]F \quad \Gamma \vdash [C_2]F \\
 \Gamma \vdash [C_1 \cup C_2]F \\
 \Gamma \vdash F \Rightarrow [C]F \\
 \Gamma \vdash F \Rightarrow [C^*]F \\
 \Gamma \vdash F \Rightarrow G \\
 \Gamma \vdash [F?]G
\end{align*}
\]

From these, Hoare-like rules for the high-level language can be derived.
Objects and Updates

Calculus has to deal with the pointer semantics of Java objects.

- **Aliasing**: two variables \(o, o' \) may refer to the same object.
- Field assignment \(o.a := T \) may also affect the value of \(o'.a \).
- **Update formulas**: \(\{ o.a \leftarrow T \} F \)
 - Truth value of \(F \) in state after the assignment \(o.a := T \).
- **Field assignment rule**:
 \[
 \frac{\Gamma \vdash \{ o.a \leftarrow T \} F}{\Gamma \vdash [o.a := T] F}
 \]
- **Field access rule**:
 \[
 \frac{\Gamma, o = o' \vdash F(T) \quad \Gamma, o \neq o' \vdash F(o'.a)}{\Gamma \vdash \{ o.a \leftarrow T \} F(o'.a)}
 \]
 - Case distinction depending on whether \(o \) and \(o' \) refer to same object.
 - Only applied as last resort (after all other rules of the calculus).

Considerable complication of verifications.
The KeY Prover

The KeY Prover is a tool for formal verification of software. It is based on the KeY framework, which allows for the specification of formal models of software systems and the verification of their correctness. KeY uses a hybrid approach that combines deductive verification with model checking.

KeY &

KeY is developed and maintained by the Institut für Softwaretechnik und Theoretische Informatik (ISTI) at the Technische Universität Darmstadt. It is open-source software, licensed under the Eclipse Public License (EPL). KeY supports the development of formal models and proofs in a variety of logics, including higher-order logic and first-order logic with equality.
A Simple Example

File/Load Example/Getting Started/Sum and Max

class SumAndMax {
 int sum; int max;
 /*@ requires (\forall int i;
 @ 0 <= i && i < a.length; 0 <= a[i]);
 @ assignable sum, max;
 @ ensures (\forall int i;
 @ 0 <= i && i < a.length; a[i] <= max);
 @ ensures (a.length > 0 ==>
 @ (\exists int i;
 @ 0 <= i && i < a.length; max == a[i]));
 @ ensures sum == (\sum int i;
 @ 0 <= i && i < a.length; a[i]);
 @ ensures sum <= a.length * max;
 @*/
 void sumAndMax(int[] a) {
 sum = 0;
 max = 0;
 int k = 0;
 /*@ loop_invariant
 @ 0 <= k && k <= a.length
 @ && (\forall int i;
 @ 0 <= i && i < k; a[i] <= max)
 @ && (k == 0 ==> max == 0)
 @ && (k > 0 ==> (\exists int i;
 @ 0 <= i && i < k; max == a[i]))
 @ && sum == (\sum int i;
 @ 0 <= i && i< k; a[i])
 @ && sum <= k * max;
 @ assignable sum, max;
 @ decreases a.length - k;
 @*/
 while (k < a.length) {
 if (max < a[k]) max = a[k];
 sum += a[k];
 k++;
 }
 }
}
Generate the proof obligations and choose one for verification.
A Simple Example (Contd’2)

The proof obligation in Dynamic Logic.

Wolfgang Schreiner
http://www.risc.jku.at
A Simple Example (Contd’3)

\[\Rightarrow \]

\[\text{wellFormed}(\text{heap}) \]
\& \ldots
\& \((\forall \text{int } i; \)
\((0 \leq i \& i < a.\text{length}) \& \text{inInt}(i) \rightarrow 0 \leq a[i] \)
\& \((\text{self}_25.\text{inv} \& (!a = \text{null}))) \)) \)

\rightarrow \{ \text{heapAtPre}_0 := \text{heap} \mid _a := a \}
\}

\text{exc}_25 = \text{null}; \text{try} \{
\text{self}_25.\text{sumAndMax}(_a)@\text{SumAndMax};
\} \text{ catch } (\text{java.lang.Throwable } e) \{ \text{exc}_25 = e; \}
\}
\}\>
\((\forall \text{int } i; \)
\((0 \leq i \& i < a.\text{length}) \& \text{inInt}(i) \rightarrow a[i] \leq \text{self}_25.\text{max} \)
\& \((\forall \text{int } i; \)
\(0 \leq i \& i < a.\text{length}) \& \text{inInt}(i) \& \text{self}_25.\text{max} = a[i] \)) \)
\& \((\text{self}_25.\text{sum} = \text{javaCastInt}(\text{bsum}\{\text{int } i;\}(0, a.\text{length}, a[i])); \)
\& \((\text{self}_25.\text{sum} \leq \text{javaMulInt}(a.\text{length}, \text{self}_25.\text{max}) \)
\& \((\text{self}_25.\text{inv}))) \)) \}
\& (\text{exc}_25 = \text{null})
\& \(\forall \text{Field } f; \)
\(\forall \text{java.lang.Object } o; \)
\((o, f) \in \{(\text{self}_25, \text{SumAndMax}::\$\text{sum})\}
\cup \{(\text{self}_25, \text{SumAndMax}::\$\text{max})\}
\mid !o = \text{null}
\& !o.<\text{created}>@\text{heapAtPre}_0 = \text{TRUE}
\mid o.f = o.f@\text{heapAtPre}_0) \)

Press button “Start/stop automated proof search” (green arrow).
The proof runs through automatically.
Linear Search

```java
/*@ requires a != null;
@ assignable \nothing;
@ ensures
@ (result == -1 &&
@ (\forall int j; 0 <= j && j < a.length; a[j] != x)) ||
@ (0 <= result && result < a.length && a[result] == x &&
@ (\forall int j; 0 <= j && j < result; a[j] != x));
@*/

public static int search(int[] a, int x) {
    int n = a.length; int i = 0; int r = -1;
   /*@ loop_invariant
    @ a != null && n == a.length && 0 <= i && i <= n &&
    @ (\forall int j; 0 <= j && j < i; a[j] != x) &&
    @ (r == -1 || (r == i && i < n && a[r] == x));
    @ decreases r == -1 ? n-i : 0;
    @ assignable r, i; // required by KeY, not legal JML
    @*/
    while (r == -1 && i < n) {
        if (a[i] == x) r = i; else i = i+1;
    }
    return r;
}
```
Linear Search (Contd)

Also this verification is completed automatically.

Wolfgang Schreiner

http://www.risc.jku.at
Proof Structure

- Multiple conditions (Taclet option “javaLoopTreatment::teaching”):
 - Invariant Initially Valid.
 - Body Preserves Invariant.
 - Use Case (on loop exit, invariant implies postcondition).
- If proof fails, elaborate which part causes trouble and potentially correct program, specification, loop annotations.

For a successful proof, in general multiple iterations of automatic proof search (button “Start”) and invocation of separate SMT solvers required (button “Run Z3, CVC4”).
Summary

- Various academic approaches to verifying Java(Card) programs.
 - Jive: http://www.pm.inf.ethz.ch/research/jive
 - Mobius: http://kindsoftware.com/products/opensource/Mobius/
- Do not yet scale to verification of full Java applications.
 - General language/program model is too complex.
 - Simplifying assumptions about program may be made.
 - Possibly only special properties may be verified.
- Nevertheless very helpful for reasoning on Java in the small.
 - Much beyond Hoare calculus on programs in toy languages.
 - Probably all examples in this course can be solved automatically by the use of the KeY prover and its integrated SMT solvers.
- Enforce clearer understanding of language features.
 - Perhaps constructs with complex reasoning are not a good idea...

In a not too distant future, customers might demand that some critical code is shipped with formal certificates (correctness proofs)…