Verifying Java Programs with KeY

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

Verifying Java Programs

- Extended static checking of Java programs:
 - Even if no error is reported, a program may violate its specification.
 - Unsound calculus for verifying while loops.
 - Even correct programs may trigger error reports:
 - Incomplete calculus for verifying while loops.
 - Incomplete calculus in automatic decision procedure (Simplify).

- Verification of Java programs:
 - Sound verification calculus.
 - Not unfolding of loops, but loop reasoning based on invariants.
 - Loop invariants must be typically provided by user.
 - Automatic generation of verification conditions.
 - From JML-annotated Java program, proof obligations are derived.
 - Human-guided proofs of these conditions (using a proof assistant).
 - Simple conditions automatically proved by automatic procedure.

We will now deal with an integrated environment for this purpose.

The KeY Tool

http://www.key-project.org

- **KeY**: environment for verification of JavaCard programs.
- Subset of Java for smartcard applications and embedded systems.
- Universities of Karlsruhe, Koblenz, Chalmers, 1998–
 - “Chapter 16: Formal Verification with KeY: A Tutorial”
- **Specification languages**: OCL and JML.
 - Original: OCL (Object Constraint Language), part of UML standard.
 - Later added: JML (Java Modeling Language).
- **Logical framework**: Dynamic Logic (DL).
 - Successor/generalization of Hoare Logic.
 - Integrated prover with interfaces to external decision procedures.
 - Z3, CVC4.

Now only JML is supported as a specification language.

Dynamic Logic

Further development of Hoare Logic to a modal logic.

- **Hoare logic**: two separate kinds of statements.
 - Formulas P, Q constraining program states.
 - Hoare triples $\{P\}C\{Q\}$ constraining state transitions.

- **Dynamic logic**: single kind of statement.
 - Predicate logic formulas extended by two kinds of modalities.
 - $[C]Q \iff \neg[C]\neg Q$
 - Every state that can be reached by the execution of C satisfies Q.
 - The statement is trivially true, if C does not terminate.
 - $⟨C⟩Q \iff \neg⟨C⟩\neg Q$
 - There exists some state that can be reached by the execution of C and that satisfies Q.
 - The statement is only true, if C terminates.

States and state transitions can be described by DL formulas.
Dynamic Logic versus Hoare Logic

Hoare triple \(\{P\} C \{Q\} \) can be expressed as a DL formula.

- **Partial correctness interpretation:** \(P \Rightarrow [C] Q \)
 - If \(P \) holds in the current state and the execution of \(C \) reaches another state, then \(Q \) holds in that state.
 - Equivalent to the partial correctness interpretation of \(\{P\} C \{Q\} \).

- **Total correctness interpretation:** \(P \Rightarrow \langle C \rangle Q \)
 - If \(P \) holds in the current state, then there exists another state that can be reached by the execution of \(C \) in which \(Q \) holds.
 - If \(C \) is deterministic, there exists at most one such state; then equivalent to the total correctness interpretation of \(\{P\} C \{Q\} \).

For deterministic programs, the interpretations coincide.

Advantages of Dynamic Logic

Modal formulas can also occur in the context of quantifiers.

- **Hoare Logic:** \(\{x = a\} y := x * x \{x = a \land y = a^2\} \)
 - Use of free mathematical variable \(a \) to denote the “old” value of \(x \).
- **Dynamic logic:** \(\forall a : x = a \Rightarrow [y := x * x] x = a \land y = a^2 \)
 - Quantifiers can be used to restrict the scopes of mathematical variables across state transitions.

Set of DL formulas is closed under the usual logical operations.

A Calculus for Dynamic Logic

- **A core language of commands (non-deterministic):**
 - \(X := T \)
 - assignment
 - \(C_1; C_2 \)
 - sequential composition
 - \(C_1 \cup C_2 \)
 - non-deterministic choice
 - \(C^* \)
 - iteration (zero or more times)
 - \(F? \)
 - test (blocks if \(F \) is false)

- **A high-level language of commands (deterministic):**
 - \(\text{skip} \) = \text{true}?
 - \(\text{abort} \) = \text{false}?
 - \(X := T \)
 - \(C_1; C_2 \)
 - \(\text{if } F \text{ then } C_1 \text{ else } C_2 \)
 - \(\text{if } F \text{ then } C \)
 - \(\text{while } F \text{ do } C \)

A calculus is defined for dynamic logic with the core command language.

From these, Hoare-like rules for the high-level language can be derived.
Objects and Updates

Calculus has to deal with the pointer semantics of Java objects.

- **Aliasing:** two variables \(o, o' \) may refer to the same object.
- **Field assignment** \(o.a := T \) may also affect the value of \(o'.a \).
- **Update formulas:** \(\{ o.a \leftarrow T \} F \)
- **Truth value of** \(F \) in state after the assignment \(o.a := T \).

Field assignment rule:

\[
\Gamma \vdash \{ o.a \leftarrow T \} F
\]

Field access rule:

\[
\Gamma, o = o' \vdash F(T) \quad \Gamma, o \neq o' \vdash F(o'.a)
\]

Case distinction depending on whether \(o \) and \(o' \) refer to same object.

Only applied as last resort (after all other rules of the calculus).

Considerable complication of verifications.

A Simple Example

```java
class SumAndMax {
    int sum; int max;
    //@ requires (\forall int i; 0 <= i < a.length; 0 <= a[i]);
    //@ assignable sum, max;
    //@ ensures (\forall int i; 0 <= i < a.length; a[i] <= max);
    //@ ensures (a.length > 0 => (\exists int i; 0 <= i < a.length; max == a[i]));
    //@ ensures sum == (\sum int i; 0 <= i < a.length; a[i]);
    //@ assignable sum, max;
    //@ decreases a.length - k;
    //
    void sumAndMax(int[] a) { //\* loop_invariant
        /*
        0 <= k && k <= a.length
        0 <= i && i < a.length; 0 <= a[i];
        assignable sum, max;
        ensures (\forall int i; 0 <= i <= k; (0 <= i && i < k; a[i] <= max));
        ensures (\exists int i; 0 <= i && i < a.length; a[i] <= max);
        ensures (a.length > 0 => (\exists int i; 0 <= i && i < a.length; max == a[i]));
        ensures sum == (\sum int i; 0 <= i <= k; a[i]);
        assignable sum, max;
        decreases a.length - k;
        */
        int k = 0;
        for (int i = 0; i < a.length; i++) {
            if (max < a[i]) max = a[i];
            sum += a[i];
            k++;
        }
    }
}
```

Generate the proof obligations and choose one for verification.
A Simple Example (Contd’2)

The proof obligation in Dynamic Logic.

Wolfgang Schreiner http://www.risc.jku.at

A Simple Example (Contd’3)

=>
wellFormed(heap)
& ...
& ((\forall int i;
((0 <= i & i < a.length) & inInt(i) -> 0 <= a[i])
& ((self_25.<inv> & (!a = null))))
-> (heapAtPre_0=heap || _a:=a)

<\{
exc_25=null;try {
self_25.sumAndMax(_a)@SumAndMax;
} catch (java.lang.Throwable e) { exc_25=e; }
}
& ((0 <= i & i < a.length) & inInt(i) & self_25.max = a[i]))
& ((self_25.<inv> & (!a = null)))
& ((self_25.sum = javaCastInt(bsum{int i;}(0, a.length, a[i])))
& ((self_25.sum <= javaMulInt(a.length, self_25.max))
& (exc_25 = null))
& (\forall Field f;
\forall java.lang.Object o;
(o, f) \in {(self_25, SumAndMax::$sum)}
\cup {(self_25, SumAndMax::$max)}
| !o = null
| !o.<created>@heapAtPre_0 = TRUE
| o.f = o.<f>heapAtPre_0))

Press button “Start/stop automated proof search” (green arrow).

Wolfgang Schreiner http://www.risc.jku.at

A Simple Example (Contd’4)

The proof runs through automatically.

Wolfgang Schreiner http://www.risc.jku.at

Linear Search

/*@ requires a != null;
@ assignable \nothing;
@ ensures
@ (result == -1 &&
@ (\forall int j; 0 <= j && j < a.length; a[j] != x)) ||
@ (0 <= result && result < a.length && a[\result] == x &&
@ (\forall int j; 0 <= j && j < \result; a[j] != x);
@*/

public static int search(int[] a, int x) {
 int n = a.length; int i = 0; int r = -1;
 /* loop invariant */
 a != null && n == a.length && 0 <= i && i <= n &&
 (\forall int j; 0 <= j && j < i; a[j] != x) &&
 (r == -1 || (r == i && i < n && a[r] == x));
 decreases r == -1 ? n-i : 0;
 assignable r, i; // required by KeY, not legal JML
 @*/
 while (r == -1 && i < n) {
 if (a[i] == x) r = i; else i = i+1;
 }
 return r;
}
Linear Search (Contd)

Also this verification is completed automatically.

Wolfgang Schreiner http://www.risc.jku.at 17/19

Proof Structure

- Multiple conditions (Taclet option “javaLoopTreatment::teaching”):
 - Invariant Initially Valid.
 - Body Preserves Invariant.
 - Use Case (on loop exit, invariant implies postcondition).
- If proof fails, elaborate which part causes trouble and potentially correct program, specification, loop annotations.

For a successful proof, in general multiple iterations of automatic proof search (button “Start”) and invocation of separate SMT solvers required (button “Run Z3, CVC4”).

Summary

- Various academic approaches to verifying Java(Card) programs.
 - Jive: http://www.pm.inf.ethz.ch/research/jive
 - Mobius: http://kindsoftware.com/products/opensource/Mobius/
- Do not yet scale to verification of full Java applications.
 - General language/program model is too complex.
 - Simplifying assumptions about program may be made.
 - Possibly only special properties may be verified.
- Nevertheless very helpful for reasoning on Java in the small.
 - Much beyond Hoare calculus on programs in toy languages.
 - Probably all examples in this course can be solved automatically by the use of the KeY prover and its integrated SMT solvers.
- Enforce clearer understanding of language features.
 - Perhaps constructs with complex reasoning are not a good idea...

In a not too distant future, customers might demand that some critical code is shipped with formal certificates (correctness proofs)...