SMT SOLVING: DECIDABLE THEORIES

Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at
Theories

- A **theory** T is a set of first-order sentences (closed formulas) that is closed under logical consequence:

 $$ T \models F \text{ if and only if } F \in T, \text{ for every first-order formula } F. $$

- T may be defined as the set $\text{Th}(M) := \{F \mid \forall M \in M. \ M \models F\}$ of all sentences that hold in (every element of) some class M of structures.

 - Notation $\text{Th}(\mathbb{N}, 0, 1, +, \cdot, \leq)$: the theory where $0, 1, +, \cdot, \leq$ are interpreted as the usual natural number constants, functions, predicates.

- T may be also defined as the set $\text{Cn}(A) := \{F \mid A \models F\}$ of consequences of some recursively enumerable set A of first-order formulas called **axioms**.

 - A set is recursively enumerable if a machine can produce a list of its elements.
 - If $T = \text{Cn}(A)$ for some (finite) set A, then T is (finitely) **axiomatizable**.
 - Undefinability theorem (Gödel/Tarski): $\text{Th}(\mathbb{N}, 0, 1, +, \cdot, \leq)$ is not axiomatizable.

A theory describes a “domain of interest”.
Decision Problems

Theories give rise to two related decision problems.

- **The problem of Validity Modulo Theories:**
 - Given: a first-order formula F and a first-order theory T.
 - Decide: does $T \models F$ hold, i.e., is F a logical consequence of T?

- **The problem of Satisfiability Modulo Theories (SMT):**
 - Given: a first-order formula F and a first-order theory T.
 - Decide: is $T \cup \{F\}$ satisfiable?

- **Duality:** $T \models F$ if and only if $T \cup \{\neg F\}$ is not satisfiable.

An SMT solver is a decision procedure for the SMT problem (with respect to some theory or combination of theories); thus it also decides the dual validity problem.
Decidable Problems

For certain classes of formulas/theories, the satisfiability problem is decidable.

- Prenex normal form $\forall^n \exists^m$ (validity) or $\exists^n \forall^m$ (satisfiability) (“AE/EA fragment”).
- Formulas without functions and with only unary predicates (“monadic fragment”).
- Every with only finite models (e.g., the theory of fixed-size bit vectors).
- Quantifier-free theory of equality with uninterpreted functions (“equational logic”).
- Theory of arrays, theory of recursive data structures.
- Linear arithmetic over integers (“Presburger arithmetic”), natural numbers, reals.
- Theory of reals (“elementary algebra”), complex numbers, algebraically closed fields.
- Logical consequences of equalities over groups, rings, fields (“word problems”).
- …

As we will see later, also any combination of decidable theories is decidable.
SMT-LIB: The Satisfiability Modulo Theories Library

http://smt-lib.org

- A library of theories/logics of practical relevance.
- A common input language for SMT solvers.
- A repository of benchmarks.
- The basis of the yearly SMT-COMP competition.
 - https://smt-comp.github.io

Many automated/interactive reasoners and program verifiers are equipped with SMT-LIB interfaces to external SMT solvers.
• **QF_UF**: Unquantified formulas built over a signature of uninterpreted (i.e., free) sort and function symbols.

• **QF_LIA**: Unquantified linear integer arithmetic. In essence, Boolean combinations of inequations between linear polynomials over integer variables.

Not every logic is decidable, e.g., NIA (non-linear integer arithmetic).
Z3: An SMT solver with SMT-LIB Support

Software: https://github.com/Z3Prover
Tutorial: https://microsoft.github.io/z3guide

- An SMT solver developed since 2007 at Microsoft Research.
 - Nikolaj Bjørner and Leonardo de Moura.
 - Open source since 2015 under the MIT License.
- Highly efficient and versatile.
 - Frequent winner of various divisions of the SMT-COMP series.
 - Backend of various software verification systems (e.g., Microsoft Boogie).
- Uses the SMT-LIB language and supports various SMT-LIB logics.
 - Uninterpreted functions, linear arithmetic, fixed-size bit-vectors, algebraic datatypes, arrays, polynomial arithmetic, …
- Also supports quantification.
 - However, when using quantifiers, the solver is generally incomplete.

Z3 gradually evolves into a full-fledged automated theorem prover.
The SMT-LIB Language

; file example1.smt2: Integer arithmetic
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (- x y) (+ x (- y) 1)))
(check-sat)
(exit)

debian10!1> z3 example1.smt
unsat

; file example2.smt2: Getting values or models
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (+ x (* 2 y)) 20))
(assert (= (- x y) 2))
(check-sat)
(get-value (x y))
(get-model)
(exit)

debian10!1> z3 example2.smt2
sat
((x 8) (y 6))
(model
 (define-fun y () Int 6)
 (define-fun x () Int 8)
)
The SMT-LIB Language

; file example3.smt2:
; Modeling sequential code in SSA form
; Buggy swap: int x, y; int t = x; x = y; y = x;
(set-logic QF_UFLIA)

(declare-fun x (Int) Int)
(declare-fun y (Int) Int)
(declare-fun t (Int) Int)
(assert (= (t 0) (x 0)))
(assert (= (x 1) (y 0)))
(assert (= (y 1) (x 1)))
(assert (not (and (= (x 1) (y 0)) (= (y 1) (x 0)))))

(check-sat)
(get-value ((x 0) (y 0) (x 1) (y 1)))
(get-model)
(exit)

sat
(((x 0) 2)
 ((y 0) 3)
 ((x 1) 3)
 ((y 1) 3))

(model
 (define-fun y ((x!1 Int)) Int
 (ite (= x!1 0) 3
 (ite (= x!1 1) 3
 3)))
 (define-fun t ((x!1 Int)) Int
 (ite (= x!1 0) 2
 2))
 (define-fun x ((x!1 Int)) Int
 (ite (= x!1 0) 2
 (ite (= x!1 1) 3
 2)))
)

8/25
Example Application: Program Verification

We can reduce the verification of programs to deciding the satisfiability of formulas.

- **Verification of program with respect to pre- and post-condition:**

 \[
 \{a[0] = x \land a[1] = y \land a[2] = z\}
 \]

  ```
  i = 0; m = a[i];
  i = i+1; if (a[i] < m) m = a[i];
  i = i+1; if (a[i] < m) m = a[i];
  \{m \leq x \land m \leq y \land m \leq z \land (m = x \lor m = y \lor m = z)\}
  ```

- **Satisfiability of formula:**

 \[
 a[0] = x \land a[1] = y \land a[2] = z \land \\
 i_0 = 0 \land m_0 = a[i_0] \land \\
 i_1 = i_0 + 1 \land (\text{if } a[i_1] < m_0 \text{ then } m_1 = a[i_1] \text{ else } m_1 = m_0) \land \\
 i_2 = i_1 + 1 \land (\text{if } a[i_2] < m_1 \text{ then } m_2 = a[i_2] \text{ else } m_2 = m_1) \land \\
 \neg (m_2 \leq x \land m_2 \leq y \land m_2 \leq z \land (m_2 = x \lor m_2 = y \lor m_2 = z))
 \]

The unsatisfiability of the formula establishes the correctness of the program with respect to its specification; a satisfying valuation determines a violating program run.
Program Verification: SMT-LIB Script

; file minimum.smt2:
(set-logic QF_UFLIA)

(declare-fun a (Int) Int)
(declare-const x Int) (declare-const y Int) (declare-const z Int)
(declare-const i0 Int) (declare-const i1 Int) (declare-const i2 Int)
(declare-const m0 Int) (declare-const m1 Int) (declare-const m2 Int)

(assert (= (a 0) x)) (assert (= (a 1) y)) (assert (= (a 2) z))
(assert (= i0 0)) (assert (= m0 (a i0)))
(assert (= i1 (+ i0 1))) (assert (ite (< (a i1) m0) (= m1 (a i1)) (= m1 m0)))
(assert (= i2 (+ i1 1))) (assert (ite (< (a i2) m1) (= m2 (a i2)) (= m2 m1)))
(assert (not
 (and (and (and (<= m2 x) (<= m2 y)) (<= m2 z))
 (or (or (= m2 x) (= m2 y)) (= m2 z))))))

(check-sat) (exit)

debian10!1> z3 minimum.smt2
unsat
Program Verification: SMT-LIB Script

; file minimum2.smt2:
...
; BUG: ">" rather than "<"
(assert (ite (> (a i2) m1) (= m2 (a i2)) (= m2 m1)))
...
(check-sat) (get-value (x y z i0 m0 i1 m1 i2 m2)) (get-model) (exit)

alan!89> z3 minimum2.smt2
sat
((x 1) (y 0) (z 2) (i0 0) (m0 1) (i1 1) (m1 0) (i2 2) (m2 2))
(model
 (define-fun m0 () Int 1) (define-fun i1 () Int 1) (define-fun m2 () Int 2)
 (define-fun y () Int 0) (define-fun m1 () Int 0) (define-fun i2 () Int 2)
 (define-fun i0 () Int 0) (define-fun z () Int 2) (define-fun x () Int 1)
 (define-fun a ((x!1 Int)) Int (ite (= x!1 0) 1 (ite (= x!1 1) 0 (ite (= x!1 2) 2 1)))))

The assignments of a buggy program with an inverted test operation.
The Theory \(LRA \): Linear Real Arithmetic

Essentially the SMT-LIB logic QF_LRA.

- \(LRA \) is a quantifier-free first-order theory.
 - Interpretation over the domain \(\mathbb{R} \) of real numbers.
 - Only atomic formulas are inequalities \(a \leq b \) with polynomials \(a, b \).
 - Integer and rational constants, functions + and ·, predicate \(\leq \).
 - Also \(-, <, >, \geq, = \) are allowed: \(a - b \) can be reduced to \(a + (-1) \cdot b \); \(\{<, >\} \) can be reduced to \(\{=, \leq, \geq\} \); \(= \) can be reduced to \(\{\leq, \geq\} \); \(\geq \) can be reduced to \(\leq \).
 - Linear: in every multiplication \(a \cdot b \), \(a \) must be a constant.

- \(LRA \)-Satisfiability of formula \(F \):
 - Convert \(F \) into its disjunctive normal form \(C_1 \lor \ldots \lor C_n \).
 - \(F \) is \(LRA \)-satisfiable if and only if some \(C_i \) is \(LRA \)-satisfiable.

To decide the \(LRA \)-Satisfiability of \(F \), it suffices to decide the satisfiability of a conjunction of (possibly negated) inequalities \(a \leq b \) with linear polynomials \(a, b \) (in the following, we only consider conjunctions of unnegated inequalities).
Deciding LRA-Satisfiability by Fourier-Motzkin Elimination

Joseph Fourier (1826), Theodore Motzkin (1936).

```
function FOURIERMOTZKIN(F)    ▶ $F$ is a conjunction of inequalities $a \leq b$ with linear polynomials $a, b$
  while $F$ contains a variable do
    Choose some variable $x$ in $F$
    Arithmetically transform every inequality in which $x$ occurs into the form $a \leq x$ or $x \leq b$
    Let $A$ be the set of all $a$ where $a \leq x$ is an inequality in $F$.
    Let $B$ be the set of all $b$ where $x \leq b$ is an inequality in $F$.
    Remove from $F$ all inequalities of form $a \leq x$ and $x \leq b$.
    Add to $F$ a (possibly simplified version of the) inequality $a \leq b$ for every pair $(a, b) \in A \times B$
  end while
  if $F$ contains a constraint $c_1 \leq c_2$ with constant $c_1$ greater than constant $c_2$ then
    return false  ▶ unsatisfiable
  else
    return true   ▶ satisfiable
  end if
end function
```
Example

LRA-Satisfiability of formula $F : \iff (z \leq x - y) \land (x + 2 \cdot y \leq 5) \land (y \leq 4 \cdot z - 2 \cdot x)$

- Eliminate x:
 - Transform: $(z + y \leq x) \land (x \leq 5 - 2 \cdot y) \land (x \leq 2 \cdot z - \frac{1}{2} \cdot y)$
 - Eliminate: $(z + y \leq 5 - 2 \cdot y) \land (z + y \leq 2 \cdot z - \frac{1}{2} \cdot y)$
 - Simplify: $(z \leq 5 - 3 \cdot y) \land (\frac{3}{2} \cdot y \leq z)$

- Eliminate z:
 - Transform: $(\frac{3}{2} \cdot y \leq z) \land (z \leq 5 - 3 \cdot y)$
 - Eliminate: $(\frac{3}{2} \cdot y \leq 5 - 3 \cdot y)$
 - Simplify: $(\frac{9}{2} \cdot y \leq 5)$

- Eliminate y:
 - Transform: $(y \leq \frac{10}{9})$
 - Eliminate: \top

F is LRA-satisfiable (by, e.g., $y := 0 \in [-\infty, \frac{10}{9}], z := 0 \in [0, 5], x := 0 \in [0, 0]$).
Example

LRA-Satisfiability of formula $F \iff (x \leq y) \land (x \leq z) \land (y + 2 \cdot z \leq x) \land (1 \leq x)$

- **Eliminate x:**
 - **Transform:** $(y + 2 \cdot z \leq x) \land (1 \leq x) \land (x \leq y) \land (x \leq z)$
 - **Eliminate:** $(y + 2 \cdot z \leq y) \land (y + 2 \cdot z \leq z) \land (1 \leq y) \land (1 \leq z)$
 - **Simplify:** $(z \leq 0) \land (y + z \leq 0) \land (1 \leq y) \land (1 \leq z)$

- **Eliminate z:**
 - **Transform:** $(1 \leq z) \land (z \leq 0) \land (z \leq -y) \land (1 \leq y)$
 - **Eliminate:** $(1 \leq 0) \land (1 \leq -y) \land (1 \leq y)$
 - **Simplify:** $(1 \leq 0) \land (y \leq -1) \land (1 \leq y)$

- **Eliminate y:**
 - **Transform:** $(1 \leq y) \land (y \leq -1) \land (1 \leq 0)$
 - **Eliminate:** $(1 \leq -1) \land (1 \leq 0)$

F is LRA-unsatisfiable.
The Theory EUF: Equality with Uninterpreted Functions

Essentially the SMT-LIB logic QF_UF.

- EUF is a quantifier-free first-order theory with only predicate “$=$”.
 - Syntax: an arbitrary propositional combination of equalities.
 - Semantics: the fixed interpretation of “$=$” as “equality”.
- EUF is sufficient to also deal with arbitrary other predicates in a formula F:
 - Introduce a fresh constant T and a fresh function f_p for every other predicate p.
 - Transform every atomic formula $p(...)$ into an equality $f_p(...) = T$.
 - Formula F is satisfiable if and only if its transformed version is EUF-satisfiable.
- EUF-satisfiability of formula F:
 - Convert F into its disjunctive normal form $C_1 \lor \ldots \lor C_n$.
 - F is EUF-satisfiable if and only if some C_i is EUF-satisfiable.

It suffices to decide the satisfiability of a conjunction of (negated) equalities.
Deciding EUF-Satisfiability by Congruence Closure

- $R \subseteq S \times S$ is a congruence relation if it is an equivalence relation
 - R is reflexive, symmetric, and transitive

 that satisfies for every n-ary function f the congruence condition of f:
 - $\forall t, u \in S^n. (\forall 1 \leq i \leq n. R(t_i, u_i)) \Rightarrow R(f(t), f(u))$

- The congruence closure R^c is the smallest congruence relation covering R:
 - R^c is a congruence relation with $R \subseteq R^c$
 - $\forall R'. (R'$ is a congruence relation with $R \subseteq R') \Rightarrow (R^c \subseteq R')$

- EUF-satisfiability of formula F :
 - Let R be the relation $\{(t_i, u_i) \mid 1 \leq i \leq n\}$ on the set S of subterms of F.
 - F is EUF-satisfiable if and only if $\forall n + 1 \leq j \leq n + m. \neg R^c(t_j, u_j)$.

To decide the EUF-satisfiability of F, it suffices to compute the congruence closure of the term equalities in F and check that it is compatible with the term inequalities.
Congruence Closure: Basic Idea

We compute the congruence closure by partitioning S into classes of congruent terms.

- **Partition** $S/R^c := \{ [t]_{R^c} \mid t \in S \}$.
 - Congruence class $[t]_{R^c}$: $R^c(t, u)$ if and only if $[t]_{R^c} = [u]_{R^c}$.
 - Given F with equations $t_1 = u_1, \ldots, t_n = u_n$, compute partitions $P_0, P_1, \ldots, P_n = S/R^c$.
 - P_0: every element of S represents a separate congruence class.
 - P_{i+1}: determined from P_i by merging $[t_{i+1}]$ and $[u_{i+1}]$, i.e., by forming their union and propagating new congruences that arise within this union.

- **Example**: satisfiability of $F := f(a, b) = a \land f(f(a, b), b) \neq a$
 - Set $S := \{a, b, f(a, b), f(f(a, b), b)\}$, single equation $f(a, b) = a$.
 - $P_0 := \{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$
 - $P_1 := \{\{b\}, \{a, f(a, b), f(f(a, b), b)\}\}$
 - Union of $[f(a, b)]$ and $[a]$: $\{\{b\}, \{a, f(a, b)\}, \{f(f(a, b), b)\}\}$
 - Propagation: $[f(a, b)] = [a]$ implies $[f(f(a, b), b)] = [f(a, b)]$
 - F is **EUF-unsatisfiable**: $[f(f(a, b), b)] = [a]$.
Congrence Closure: Algorithm

function \text{CONGRUENCE_CLOSURE}(S, R)
\begin{align*}
P &:= \{ \{t\} \mid t \in S \} \quad \triangleright \text{compute partition } P := S/(R^c) \\
\text{for } (t, u) \in R \text{ do} \\
&P := \text{MERGE}(S, P, t, u) \\
\text{end for} \\
\triangleright \text{return relation determined by } P \\
\text{return } \{(t, u) \in S \times S \mid \text{FIND}(P, t) = \text{FIND}(P, u)\} \\
\end{align*}
end function

function \text{CONGRUENT}(P, t, u)
\begin{align*}
&\text{if } t \text{ and } u \text{ are } f(t_1, \ldots, t_n) \text{ and } f(u_1, \ldots, u_n) \text{ then} \\
&\quad \triangleright \text{return } \forall 1 \leq i \leq n. \text{FIND}(P, t_i) = \text{FIND}(P, u_i) \\
&\text{else} \\
&\quad \triangleright \text{return false} \\
&\text{end if} \\
\end{align*}
end function

\(P\) can be represented by a “disjoint-set” data structure with efficient merge/find algorithms.

function \text{MERGE}(S, P, t, u) \quad \triangleright \text{merge } [t] \text{ and } [u]
\begin{align*}
p_t, p_u &:= \text{FIND}(P, t), \text{FIND}(P, u) \\
\text{if } p_t = p_u \text{ return } P \\
&P := (P\{p_t, p_u\}) \cup \{p_t \cup p_u\} \\
\text{for } (t_1, t_2) \in S \times S \text{ do} \\
\quad p_1, p_2 := \text{FIND}(P, t_1), \text{FIND}(P, t_2) \\
\quad \text{if } p_1 \neq p_2 \wedge \text{CONGRUENT}(P, t_1, t_2) \text{ then} \\
\quad \quad P := \text{MERGE}(P, t_1, t_2) \\
\text{end if} \\
\text{end for} \\
\text{return } P \\
\end{align*}
end function

function \text{FIND}(P, t) \quad \triangleright \text{find congruence class } [t] \in P \\
\begin{align*}
&\text{choose } p \in P \text{ with } t \in p \\
&\text{return } p \\
\end{align*}
end function
Example: satisfiability of $F : \iff f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$.

- $P_0 := \{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$
- $P_1 := \{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$
 - Union of $[f^3(a)]$ and $[a]$: $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$
 - Propagation: $[f^3(a)] = [a]$ implies $[f^4(a)] = [f(a)]$ and $[f^5(a)] = [f^2(a)]$.
- $P_2 := \{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$
 - Union of $[f^5(a)]$ and $[a]$: $\{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$
 - Propagation: $[f^2(a)] = [a]$ implies $[f^3(a)] = [f(a)]$.
- F is EUF-unsatisfiable: $[f(a)] = [a]$.

Example: satisfiability of $F : \iff f(x) = y \land x \neq f(y)$.

- $P_0 := \{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
- $P_1 := \{\{x\}, \{y, f(x)\}, \{f(y)\}\}$
 - Union of $[f(x)]$ and $[y]$: $\{\{x\}, \{y, f(x)\}, \{f(y)\}\}$
 - No more propagation.
- F is EUF-satisfiable: $[x] \neq [f(y)]$.
let congruent eqv (s,t) = (* Test whether subterms are congruent under an equivalence. *)
 match (s,t) with
 Fn(f,a1),Fn(g,a2) -> f = g & forall2 (equivalent eqv) a1 a2
 | _ -> false;;

let rec emerge (s,t) (eqv,pfn) = (* Merging of terms, with congruence closure. *)
 let s' = canonize eqv s and t' = canonize eqv t in
 if s' = t' then (eqv,pfn) else
 let sp = tryapplyl pfn s' and tp = tryapplyl pfn t' in
 let eqv' = equate (s,t) eqv in
 let st' = canonize eqv' s' in
 let pfn' = (st' |-> union sp tp) pfn in
 itlist (fun (u,v) (eqv,pfn) ->
 if congruent eqv (u,v) then emerge (u,v) (eqv,pfn)
 else eqv,pfn)
 (allpairs (fun u v -> (u,v)) sp tp) (eqv',pfn');;
let predecessors t pfn =
 match t with
 Fn(f,a) -> itlist (fun s f -> (s |-> insert t (tryapplyl f s)) f) (setify a) pfn
 | _ -> pfn;;

let ccsatisfiable fms = (* Satisfiability of conjunction of ground equations and inequations. *)
 let pos,neg = partition positive fms in
 let eqps = map dest_eq pos and eqns = map (dest_eq ** negate) neg in
 let lrs = map fst eqps @ map snd eqps @ map fst eqns @ map snd eqns in
 let pfn = itlist predecessors (unions(map subterms lrs)) undefined in
 let eqv,_ = itlist emerge eqps (unequal,pfn) in
 forall (fun (l,r) -> not(equivalent eqv l r)) eqns;;

let ccvalid fm = (* Validity checking a universal formula. *)
 let fms = simpdnf(askolemize(Not(generalize fm))) in
 not (exists ccsatisfiable fms);;

ccvalid <<<f(f(f(f(f(c))))) = c /
 f(f(f(c))) = c =>
 f(c) = c /
 f(g(c)) = g(f(c))>>>;
- : bool = true

ccvalid <<<f(f(f(f(c)))) = c /
 f(f(c)) = c =>
 f(c) = c>>>;
- : bool = true
The Theory E: Equality Logic

EUF without uninterpreted functions (i.e., only with constants).

- Decision of E-satisfiability:
 - Computation of congruence closure without the need to propagate congruences:

    ```
    function MERGE(S, P, t, u)
    pt, pu := FIND(P, t), FIND(P, u)
    return (P\{pt, pu\}) \cup \{pt \cup pu\} > equals P, if pt = pu
    end function
    ```

- Ackermann’s Reduction: transformation of an EUF-formula into an E-formula.
 - Replace every function application $f(t_1, \ldots, t_n)$ by a fresh constant f_{t_1,\ldots,t_n}.
 - For every pair of applications $f(t_1, \ldots, t_n)$ and $f(u_1, \ldots, u_n)$, add the constraint

 $$(t_1 = u_1 \land \ldots \land t_n = u_n) \Rightarrow f_{t_1,\ldots,t_n} = f_{u_1,\ldots,u_n}$$

 - The result is E-satisfiable if and only if the original formula is EUF-satisfiable.

The theory E needs larger formulas but has a simpler decision algorithm than EUF.

23/25
E-Satisfiability: Example

EUF-satisfiability of formula \(F \): \(x_2 = x_3 \land f(x_1) = f(x_3) \land f(x_1) \neq f(x_2) \)

- **Ackermann’s reduction to** \(E \)-**formula** \(F' \):
 \[
 x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land
 (x_1 = x_2 \Rightarrow f_1 = f_2) \land (x_1 = x_3 \Rightarrow f_1 = f_3) \land (x_2 = x_3 \Rightarrow f_2 = f_3)
 \]

- **Disjunctive normal form of** \(F' \):
 \[
 (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3) \lor
 (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land f_2 = f_3) \lor
 (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land f_1 = f_3 \land x_2 \neq x_3) \lor
 (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land f_1 = f_2 \land x_1 \neq x_3 \land x_2 \neq x_3) \lor
 (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land f_1 = f_2 \land f_1 = f_3 \land x_2 \neq x_3) \lor
 (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land f_1 = f_2 \land f_1 = f_3 \land f_2 = f_3) \lor
 (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land f_1 = f_2 \land f_1 = f_3 \land f_2 = f_3) \lor
 (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land f_1 = f_2 \land f_1 = f_3 \land f_2 = f_3)
 \]
E-Satisfiability: Example

E-satisfiability of DNF of F': only two clauses do not have conflicting literals.

- **Satisfiability of** $(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land f_2 = f_3)$:
 - $P_0 := \{\{x_1\}, \{x_2\}, \{x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $P_1 := \{\{x_1\}, \{x_2, x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $P_2 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_3\}, \{f_2\}\}$
 - $P_3 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_2, f_3\}\}$
 - $[f_1] = [f_2]:$ clause is E-unsatisfiable.

- **Satisfiability of** $(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land f_1 = f_3 \land f_2 = f_3)$:
 - $P_0 := \{\{x_1\}, \{x_2\}, \{x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $P_1 := \{\{x_1\}, \{x_2, x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $P_2 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_3\}, \{f_2\}\}$
 - $P_3 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_2, f_3\}\}$
 - $[f_1] = [f_2]:$ clause is E-unsatisfiable.

DNF of F' is E-unsatisfiable, thus F is EUF-unsatisfiable.