SMT SOLVING: DECIDABLE THEORIES

Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at
Theories

- A theory T is a set of first-order sentences (closed formulas) that is closed under logical consequence:

 $$ T \models F \text{ if and only if } F \in T, \text{ for every first-order formula } F. $$

- T may be defined as the set $Th(M) := \{ F \mid \forall M \in M. M \models F \}$ of all sentences that hold in (every element of) some class M of structures.
 - Notation $Th(\mathbb{N}, 0, 1, +, \cdot, \leq)$: the theory where $0, 1, +, \cdot, \leq$ are interpreted as the usual natural number constants, functions, predicates.

- T may be also defined as the set $Cn(A) := \{ F \mid A \models F \}$ of consequences of some recursively enumerable set A of first-order formulas called axioms.
 - A set is recursively enumerable if a machine can produce a list of its elements.
 - If $T = Cn(A)$ for some (finite) set A, then T is (finitely) axiomatizable.
 - Undefinability theorem (Gödel/Tarski): $Th(\mathbb{N}, 0, 1, +, \cdot, \leq)$ is not axiomatizable.

A theory describes a “domain of interest”.

Decision Problems

Theories give rise to two related decision problems.

- **The problem of Validity Modulo Theories:**
 - Given: a first-order formula F and a first-order theory T.
 - Decide: does $T \models F$ hold, i.e., is F a logical consequence of T?

- **The problem of Satisfiability Modulo Theories (SMT):**
 - Given: a first-order formula F and a first-order theory T.
 - Decide: is $T \cup \{F\}$ satisfiable?

- **Duality:** $T \models F$ if and only if $T \cup \{\neg F\}$ is **not** satisfiable.

An SMT solver is a decision procedure for the SMT problem (with respect to some theory or combination of theories); thus it also decides the dual validity problem.
Decidable Problems

For certain classes of formulas/theories, the satisfiability problem is decidable.

- Prenex normal form $\forall^n \exists^m$ (validity) or $\exists^n \forall^m$ (satisfiability) (“AE/EA fragment”).
- Formulas without functions and with only unary predicates (“monadic fragment”).
- Every with only finite models (e.g., the theory of fixed-size bit vectors).
- Quantifier-free theory of equality with uninterpreted functions (“equational logic”).
- Theory of arrays, theory of recursive data structures.
- Linear arithmetic over integers (“Presburger arithmetic”), natural numbers, reals.
- Theory of reals (“elementary algebra”), complex numbers, algebraically closed fields.
- Logical consequences of equalities over groups, rings, fields (“word problems”).
- …

As we will see later, also any combination of decidable theories is decidable.
SMT-LIB: The Satisfiability Modulo Theories Library

http://smt-lib.org

- A library of theories/logics of practical relevance.
- A common input language for SMT solvers.
- A repository of benchmarks.
- The basis of the yearly SMT-COMP competition.

 - https://smt-comp.github.io

Many automated/interactive reasoners and program verifiers are equipped with SMT-LIB interfaces to external SMT solvers.
The SMT-LIB Library

- **QF_UF**: Unquantified formulas built over a signature of uninterpreted (i.e., free) sort and function symbols.
- **QF_LIA**: Unquantified linear integer arithmetic. In essence, Boolean combinations of inequations between linear polynomials over integer variables.

Not every logic is decidable, e.g., NIA (non-linear integer arithmetic).
Z3: An SMT solver with SMT-LIB Support

Software: https://github.com/Z3Prover
Tutorial: https://microsoft.github.io/z3guide

- An **SMT solver** developed since 2007 at Microsoft Research.
 - Nikolaj Bjørner and Leonardo de Moura.
 - Open source since 2015 under the MIT License.

- Highly **efficient and versatile**.
 - Frequent winner of various divisions of the SMT-COMP series.
 - Backend of various software verification systems (e.g., Microsoft Boogie).

- Uses the **SMT-LIB** language and supports various SMT-LIB logics.
 - Uninterpreted functions, linear arithmetic, fixed-size bit-vectors, algebraic datatypes, arrays, polynomial arithmetic, . . .

- Also supports **quantification**.
 - However, when using quantifiers, the solver is generally incomplete.

Z3 gradually evolves into a full-fledged automated theorem prover.
The SMT-LIB Language

; file example1.smt2: Integer arithmetic
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (- x y) (+ x (- y) 1)))
(check-sat)
(exit)

debian10!1> z3 example1.smt
unsat

; file example2.smt2: Getting values or models
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (+ x (* 2 y)) 20))
(assert (= (- x y) 2))
(check-sat)
(get-value (x y))
(get-model)
(exit)

debian10!1> z3 example2.smt2
sat
((x 8) (y 6))
(model
 (define-fun y () Int 6)
 (define-fun x () Int 8)
)
The SMT-LIB Language

; file example3.smt2:
; Modeling sequential code in SSA form
; Buggy swap: int x, y; int t = x; x = y; y = x;
(set-logic QF_UFLIA)

(declare-fun x (Int) Int)
(declare-fun y (Int) Int)
(declare-fun t (Int) Int)
(assert (= (t 0) (x 0)))
(assert (= (x 1) (y 0)))
(assert (= (y 1) (x 1)))
(assert (not (and (= (x 1) (y 0))
 (= (y 1) (x 0)))))

(check-sat)
(get-value ((x 0) (y 0) (x 1) (y 1)))
(get-model)
(exit)
Example Application: Program Verification

We can reduce the verification of programs to deciding the satisfiability of formulas.

- Verification of program with respect to pre- and post-condition:
 \[
 \{ a[0] = x \land a[1] = y \land a[2] = z \}
 \]

 \[
 i = 0; \quad m = a[i];
 \]

 \[
 i = i+1; \quad \text{if } (a[i] < m) \quad m = a[i];
 \]

 \[
 i = i+1; \quad \text{if } (a[i] < m) \quad m = a[i];
 \]

 \[
 \{ m \leq x \land m \leq y \land m \leq z \land (m = x \lor m = y \lor m = z) \}
 \]

- Satisfiability of formula:
 \[
 a[0] = x \land a[1] = y \land a[2] = z \land
 \]

 \[
 i_0 = 0 \land m_0 = a[i_0] \land
 \]

 \[
 i_1 = i_0 + 1 \land (\text{if } a[i_1] < m_0 \text{ then } m_1 = a[i_1] \text{ else } m_1 = m_0) \land
 \]

 \[
 i_2 = i_1 + 1 \land (\text{if } a[i_2] < m_1 \text{ then } m_2 = a[i_2] \text{ else } m_2 = m_1) \land
 \]

 \[
 \neg (m_2 \leq x \land m_2 \leq y \land m_2 \leq z \land (m_2 = x \lor m_2 = y \lor m_2 = z))
 \]

The unsatisfiability of the formula establishes the correctness of the program with respect to its specification; a satisfying valuation determines a violating program run.
Program Verification: SMT-LIB Script

; file minimum.smt2:
(set-logic QF_UFLIA)

(declare-fun a (Int) Int)
(declare-const x Int) (declare-const y Int) (declare-const z Int)
(declare-const i0 Int) (declare-const i1 Int) (declare-const i2 Int)
(declare-const m0 Int) (declare-const m1 Int) (declare-const m2 Int)

(assert (= (a 0) x)) (assert (= (a 1) y)) (assert (= (a 2) z))
(assert (= i0 0)) (assert (= m0 (a i0)))
(assert (= i1 (+ i0 1))) (assert (ite (< (a i1) m0) (= m1 (a i1)) (= m1 m0)))
(assert (= i2 (+ i1 1))) (assert (ite (< (a i2) m1) (= m2 (a i2)) (= m2 m1)))
(assert (not
 (and (and (and (<= m2 x) (<= m2 y)) (<= m2 z))
 (or (or (= m2 x) (= m2 y)) (= m2 z))))))

(check-sat) (exit)

debian10!1> z3 minimum.smt2
unsat
Program Verification: SMT-LIB Script

; file minimum2.smt2:
...
; BUG: ">" rather than "<"
(assert (ite (> (a i2) m1) (= m2 (a i2)) (= m2 m1)))
...
(check-sat) (get-value (x y z i0 m0 i1 m1 i2 m2)) (get-model) (exit)

alan!89> z3 minimum2.smt2
sat
((x 1) (y 0) (z 2) (i0 0) (m0 1) (i1 1) (m1 0) (i2 2) (m2 2))
(model
 (define-fun m0 () Int 1) (define-fun i1 () Int 1) (define-fun m2 () Int 2)
 (define-fun y () Int 0) (define-fun m1 () Int 0) (define-fun i2 () Int 2)
 (define-fun i0 () Int 0) (define-fun z () Int 2) (define-fun x () Int 1)
 (define-fun a ((x!1 Int)) Int (ite (= x!1 0) 1 (ite (= x!1 1) 0 (ite (= x!1 2) 2 1))))

The assignments of a buggy program with an inverted test operation.
The Theory \textbf{LRA}: Linear Real Arithmetic

Essentially the SMT-LIB logic QF_LRA.

- \textbf{LRA} is a quantifier-free first-order theory.
 - Interpretation over the domain \mathbb{R} of real numbers.
 - Only atomic formulas are inequalities $a \leq b$ with polynomials a, b.
 - Integer and rational constants, functions $+$ and \cdot, predicate \leq.
 - Also $-, <, >, \geq, =$ are allowed: $a - b$ can be reduced to $a + (-1) \cdot b$; $\{<, >\}$ can be reduced to $\{=, \leq, \geq\}$; $=$ can be reduced to $\{\leq, \geq\}$; \geq can be reduced to \leq.
 - Linear: in every multiplication $a \cdot b$, a must be a constant.

- \textbf{LRA-Satisfiability} of formula F:
 - Convert F into its disjunctive normal form $C_1 \lor \ldots \lor C_n$.
 - F is \textbf{LRA}-satisfiable if and only if some C_i is \textbf{LRA}-satisfiable.

To decide the \textbf{LRA-Satisfiability} of F, it suffices to decide the satisfiability of a conjunction of (possibly negated) inequalities $a \leq b$ with linear polynomials a, b (in the following, we only consider conjunctions of unnegated inequalities).
Deciding LRA-Satisfiability by Fourier-Motzkin Elimination

Joseph Fourier (1826), Theodore Motzkin (1936).

function $\text{FOURIERMOTZKIN}(F)$ \hspace{1cm} F is a conjunction of inequalities $a \leq b$ with linear polynomials a, b

while F contains a variable do
 Choose some variable x in F
 Arithmetically transform every inequality in which x occurs into the form $a \leq x$ or $x \leq b$
 Let A be the set of all a where $a \leq x$ is an inequality in F.
 Let B be the set of all b where $x \leq b$ is an inequality in F.
 Remove from F all inequalities of form $a \leq x$ and $x \leq b$.
 Add to F a (possibly simplified version of the) inequality $a \leq b$ for every pair $(a, b) \in A \times B$
end while

if F contains a constraint $c_1 \leq c_2$ with constant c_1 greater than constant c_2 then
 return false \hspace{1cm} \triangleright unsatisfiable
else
 return true \hspace{1cm} \triangleright satisfiable
end if

end function
Example

LRA-Satisfiability of formula $F :\Leftrightarrow (z \leq x - y) \land (x + 2 \cdot y \leq 5) \land (y \leq 4 \cdot z - 2 \cdot x)$

- **Eliminate x**:
 - Transform: $(z + y \leq x) \land (x \leq 5 - 2 \cdot y) \land (x \leq 2 \cdot z - \frac{1}{2} \cdot y)$
 - Eliminate: $(z + y \leq 5 - 2 \cdot y) \land (z + y \leq 2 \cdot z - \frac{1}{2} \cdot y)$
 - Simplify: $(z \leq 5 - 3 \cdot y) \land (\frac{3}{2} \cdot y \leq z)$

- **Eliminate z**:
 - Transform: $(\frac{3}{2} \cdot y \leq z) \land (z \leq 5 - 3 \cdot y)$
 - Eliminate: $(\frac{3}{2} \cdot y \leq 5 - 3 \cdot y)$
 - Simplify: $(\frac{9}{2} \cdot y \leq 5)$

- **Eliminate y**:
 - Transform: $(y \leq \frac{10}{9})$
 - Eliminate: \top

F is LRA-satisfiable (by, e.g., $y := 0 \in [-\infty, \frac{10}{9}], z := 0 \in [0, 5], x := 0 \in [0, 0]$).
Example

LRA-Satisfiability of formula $F : \iff (x \leq y) \land (x \leq z) \land (y + 2 \cdot z \leq x) \land (1 \leq x)$

- **Eliminate x:**
 - Transform: $(y + 2 \cdot z \leq x) \land (1 \leq x) \land (x \leq y) \land (x \leq z)$
 - Eliminate: $(y + 2 \cdot z \leq y) \land (y + 2 \cdot z \leq z) \land (1 \leq y) \land (1 \leq z)$
 - Simplify: $(z \leq 0) \land (y + z \leq 0) \land (1 \leq y) \land (1 \leq z)$

- **Eliminate z:**
 - Transform: $(1 \leq z) \land (z \leq 0) \land (z \leq -y) \land (1 \leq y)$
 - Eliminate: $(1 \leq 0) \land (1 \leq -y) \land (1 \leq y)$
 - Simplify: $(1 \leq 0) \land (y \leq -1) \land (1 \leq y)$

- **Eliminate y:**
 - Transform: $(1 \leq y) \land (y \leq -1) \land (1 \leq 0)$
 - Eliminate: $(1 \leq -1) \land (1 \leq 0)$

F is LRA-unsatisfiable.
The Theory \(EUF \): Equality with Uninterpreted Functions

Essentially the SMT-LIB logic QF_UF.

- \(EUF \) is a quantifier-free first-order theory with only predicate “=”.
 - Syntax: an arbitrary propositional combination of equalities.
 - Semantics: the fixed interpretation of “=” as “equality”.

- \(EUF \) is sufficient to also deal with \textbf{arbitrary other predicates} in a formula \(F \):
 - Introduce a fresh constant \(T \) and a fresh function \(f_p \) for every other predicate \(p \).
 - Transform every atomic formula \(p(\ldots) \) into an equality \(f_p(\ldots) = T \).
 - Formula \(F \) is satisfiable if and only if its transformed version is \(EUF \)-satisfiable.

- \(EUF \)-satisfiability of formula \(F \):
 - Convert \(F \) into its disjunctive normal form \(C_1 \lor \ldots \lor C_n \).
 - \(F \) is \(EUF \)-satisfiable if and only if some \(C_i \) is \(EUF \)-satisfiable.

It suffices to decide the satisfiability of a conjunction of (negated) equalities.
Deciding EUF-Satisfiability by Congruence Closure

- $R \subseteq S \times S$ is a congruence relation if it is an equivalence relation
 - R is reflexive, symmetric, and transitive
 that satisfies for every n-ary function f the congruence condition of f:
 - $\forall t, u \in S^n. (\forall 1 \leq i \leq n. R(t_i, u_i)) \Rightarrow R(f(t), f(u))$
- The congruence closure R^c is the smallest congruence relation covering R:
 - R^c is a congruence relation with $R \subseteq R^c$
 - $\forall R'. (R' \text{ is a congruence relation with } R \subseteq R') \Rightarrow (R^c \subseteq R')$
- EUF-satisfiability of formula $F : \Leftrightarrow (\bigwedge_{i=1}^{n} t_i = u_i) \land (\bigwedge_{j=n+1}^{n+m} t_j \neq u_j)$:
 - Let R be the relation $\{(t_i, u_i) \mid 1 \leq i \leq n\}$ on the set S of subterms of F.
 - F is EUF-satisfiable if and only if $\forall n + 1 \leq j \leq n + m. \neg R^c(t_j, u_j)$.

To decide the EUF-satisfiability of F, it suffices to compute the congruence closure of the term equalities in F and check that it is compatible with the term inequalities.
Congruence Closure: Basic Idea

We compute the congruence closure by partitioning \(S \) into classes of congruent terms.

- **Partition** \(S/R^c := \{[t]_{R^c} \mid t \in S\} \).
 - Congruence class \([t]_{R^c} : R^c(t,u)\) if and only if \([t]_{R^c} = [u]_{R^c}\).
 - Given \(F \) with equations \(t_1 = u_1, \ldots, t_n = u_n \), compute partitions \(P_0, P_1, \ldots, P_n = S/R^c \).
 - \(P_0 \): every element of \(S \) represents a separate congruence class.
 - \(P_{i+1} \): determined from \(P_i \) by merging \([t_{i+1}]\) and \([u_{i+1}]\), i.e., by forming their union and propagating new congruences that arise within this union.

- **Example**: satisfiability of \(F \) \(\iff f(a, b) = a \land f(f(a, b), b) \neq a \)
 - Set \(S := \{a, b, f(a, b), f(f(a, b), b)\} \), single equation \(f(a, b) = a \).
 - \(P_0 := \{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\} \)
 - \(P_1 := \{\{b\}, \{a, f(a, b), f(f(a, b), b)\}\} \)
 - Union of \([f(a, b)]\) and \([a]\): \(\{\{b\}, \{a, f(a, b)\}, \{f(f(a, b), b)\}\}\)
 - Propagation: \([f(a, b)] = [a] \) implies \([f(f(a, b), b)] = [f(a, b)]\)
 - \(F \) is **EUF-unsatisfiable**: \([f(f(a, b), b)] = [a] \).
Congruence Closure: Algorithm

function CONGRUENCE_CLOSURE(\(S, R\))
 \(P := \{\{t\} \mid t \in S\}\) \(\triangleright\) compute partition \(P := S/(R^c)\)
 for \((t, u) \in R\) do
 \(P := \text{MERGE}(S, P, t, u)\)
 end for
 \(\triangleright\) return relation determined by \(P\)
 return \(\{(t, u) \in S \times S \mid \text{FIND}(P, t) = \text{FIND}(P, u)\}\)
end function

function CONGRUENT(\(P, t, u\))
 if \(t\) and \(u\) are \(f(t_1, \ldots, t_n)\) and \(f(u_1, \ldots, u_n)\) then
 return \(\forall 1 \leq i \leq n. \text{FIND}(P, t_i) = \text{FIND}(P, u_i)\)
 else
 return false
 end if
end function

\(P\) can be represented by a “disjoint-set” data structure with efficient merge/find algorithms.

function MERGE(\(S, P, t, u\)) \(\triangleright\) merge \([t]\) and \([u]\)
 \(p_t, p_u := \text{FIND}(P, t), \text{FIND}(P, u)\)
 if \(p_t = p_u\) return \(P\)
 \(P := (P\backslash\{p_t, p_u\}) \cup \{p_t \cup p_u\}\)
 for \((t_1, t_2) \in S \times S\) do
 \(p_1, p_2 := \text{FIND}(P, t_1), \text{FIND}(P, t_2)\)
 if \(p_1 \neq p_2\) \&\& \text{CONGRUENT}(P, t_1, t_2) then
 \(P := \text{MERGE}(P, t_1, t_2)\)
 end if
 end for
 return \(P\)
end function

function FIND(\(P, t\)) \(\triangleright\) find congruence class \([t]\) \(\in P\)
 choose \(p \in P\) with \(t \in p\)
 return \(p\)
end function
Congruence Closure: More Examples

- **Example:** satisfiability of $F :\iff f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$.
 - $P_0 := \{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$
 - $P_1 := \{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$
 - Union of $[f^3(a)]$ and $[a]$: $\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$
 - Propagation: $[f^3(a)] = [a]$ implies $[f^4(a)] = [f(a)]$ and $[f^5(a)] = [f^2(a)]$.
 - $P_2 := \{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$
 - Union of $[f^5(a)]$ and $[a]$: $\{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$
 - Propagation: $[f^2(a)] = [a]$ implies $[f^3(a)] = [f(a)]$.

- P is **EUF-unsatisfiable**: $[f(a)] = [a]$.

- **Example:** satisfiability of $F :\iff f(x) = y \land x \neq f(y)$.
 - $P_0 := \{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
 - $P_1 := \{\{x\}, \{y, f(x)\}, \{f(y)\}\}$
 - Union of $[f(x)]$ and $[y]$: $\{\{x\}, \{y, f(x)\}, \{f(y)\}\}$
 - No more propagation.
 - F is **EUF-satisfiable**: $[x] \neq [f(y)]$.

20/25
let congruent eqv (s,t) = (* Test whether subterms are congruent under an equivalence. *)
 match (s,t) with
 Fn(f,a1),Fn(g,a2) -> f = g & forall2 (equivalent eqv) a1 a2
 | _ -> false;;

let rec emerge (s,t) (eqv,pfn) = (* Merging of terms, with congruence closure. *)
 let s' = canonize eqv s and t' = canonize eqv t in
 if s' = t' then (eqv,pfn) else
 let sp = tryapplyl pfn s' and tp = tryapplyl pfn t' in
 let eqv' = equate (s,t) eqv in
 let st' = canonize eqv' s' in
 let pfn' = (st' |-> union sp tp) pfn in
 itlist (fun (u,v) (eqv,pfn) ->
 if congruent eqv (u,v) then emerge (u,v) (eqv,pfn)
 else eqv,pfn)
 (allpairs (fun u v -> (u,v)) sp tp) (eqv',pfn');;
let predecessors t $pfn =$
 match t with
 $\text{Fn}(f,a) \rightarrow \text{itlist} \left(\text{fun} \ s \ f \rightarrow (s \ |\rightarrow \text{insert} \ t \ (\text{tryapply} \ f \ s) \ f) \ \text{(setify} \ a) \ pfn \right)
 | _ \rightarrow pfn;$

let ccsatisfiable $fms =$ (* Satisfiability of conjunction of ground equations and inequations. *)
 let $\text{pos}, \text{neg} =$ partition positive fms in
 let $\text{eqps} =$ map dest_eq pos and $\text{eqns} =$ map (dest_eq ** negate) neg in
 let $\text{lrs} =$ map fst eqps @ map snd eqps @ map fst eqns @ map snd eqns in
 let $pfn =$ itlist predecessors (unions(map subterms lrs)) undefined in
 let $\text{eqv}, _ =$ itlist emerge eqps (unequal,pfn) in
 forall (fun (l,r) -> not(equivalent eqv l r)) eqns;

let ccvalid $fm =$ (* Validity checking a universal formula. *)
 let $fms =$ simpdnf(askolemize(Not(generalize fm))) in
 not (exists ccsatisfiable fms);

ccvalid \(\langle f(f(f(f(c)))) = c \land f(f(c)) = c \Rightarrow f(c) = c \lor f(g(c)) = g(f(c))\rangle\);
- : bool = true

ccvalid \(\langle f(f(f(c))) = c \land f(f(c)) = c \Rightarrow f(c) = c\rangle\);
- : bool = true
The Theory E: Equality Logic

EUF without uninterpreted functions (i.e., only with constants).

- **Decision of E-satisfiability:**
 - Computation of congruence closure without the need to propagate congruences:
    ```
    function $\text{MERGE}(S, P, t, u)$
    $p_t, p_u := \text{FIND}(P, t), \text{FIND}(P, u)$
    return $(P\{p_t, p_u\}) \cup \{p_t \cup p_u\}$
    end function
    ```
 - equals P, if $p_t = p_u$
- **Ackermann’s Reduction:** transformation of an EUF-formula into an E-formula.
 - Replace every function application $f(t_1, \ldots, t_n)$ by a fresh constant f_{t_1, \ldots, t_n}.
 - For every pair of applications $f(t_1, \ldots, t_n)$ and $f(u_1, \ldots, u_n)$, add the constraint
 $$(t_1 = u_1 \land \ldots \land t_n = u_n) \Rightarrow f_{t_1, \ldots, t_n} = f_{u_1, \ldots, u_n}$$
 - The result is E-satisfiable if and only if the original formula is EUF-satisfiable.

The theory E needs larger formulas but has a simpler decision algorithm than EUF.
\(E\)-Satisfiability: Example

\(\text{EUF-satisfiability of formula } F : \Leftrightarrow x_2 = x_3 \land f(x_1) = f(x_3) \land f(x_1) \neq f(x_2) \)

- Ackermann’s reduction to \(E\)-formula \(F' \):

\[
\begin{align*}
&x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land \\
&(x_1 = x_2 \Rightarrow f_1 = f_2) \land (x_1 = x_3 \Rightarrow f_1 = f_3) \land (x_2 = x_3 \Rightarrow f_2 = f_3)
\end{align*}
\]

- Disjunctive normal form of \(F' \):

\[
\begin{align*}
&(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3) \lor \\
&(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land f_1 = f_3 \land x_2 \neq x_3) \lor \\
&(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land f_1 = f_3 \land f_2 = f_3) \lor \\
&(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land f_1 = f_2 \land x_1 \neq x_3 \land x_2 \neq x_3) \lor \\
&(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land f_1 = f_2 \land f_1 = f_3 \land f_2 = f_3) \lor \\
&(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land f_1 = f_2 \land f_1 = f_3 \land x_2 \neq x_3) \lor \\
&(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land f_1 = f_2 \land f_1 = f_3 \land f_2 = f_3)
\end{align*}
\]
\textbf{E-Satisfiability: Example}

\emph{E-satisfiability} of DNF of F': only two clauses do not have conflicting literals.

- **Satisfiability of** $(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land f_2 = f_3)$:
 - $P_0 := \{\{x_1\}, \{x_2\}, \{x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $P_1 := \{\{x_1\}, \{x_2, x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $P_2 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_3\}, \{f_2\}\}$
 - $P_3 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_2, f_3\}\}$
 - $[f_1] = [f_2]$: clause is \textit{E}-unsatisfiable.

- **Satisfiability of** $(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land f_1 = f_3 \land f_2 = f_3)$:
 - $P_0 := \{\{x_1\}, \{x_2\}, \{x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $P_1 := \{\{x_1\}, \{x_2, x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $P_2 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_3\}, \{f_2\}\}$
 - $P_3 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_2, f_3\}\}$
 - $[f_1] = [f_2]$: clause is \textit{E}-unsatisfiable.

DNF of F' is \textit{E}-unsatisfiable, thus F is \textit{EUF}-unsatisfiable.