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Goals of this Thesis

• extension of RISCTP/RISCAL by a saturation-based
automated theorem prover for first-order logic with
equality
• the theoretical basis for such a prover and the support

for special theories (integer and arrays)
• implementation of the prover
• experiments and tests with the prover
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Goals of this Presentation

• explain strategies for resolution (saturation)
• presentation of the plans for our prover
• outlook on the integration of SMT solvers
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Saturation Principle

• searching for a contradiction proceeds by saturating
the given set of clauses
• can be made very efficient, if a powerful concept for

redundancy elimination and good saturation
algorithms are used
• at every step such an algorithm should select an

inference, apply this inference to the set of clauses S,
and add conclusions of the inferences to S
• a good strategy for inference selection is crucial for an

efficient behaviour of a saturation algorithm
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Given Clause Algorithms
• represents the proof state by a set P of processed

clauses and a set U of unprocessed clauses
• initially, all clauses are in U and P is empty
• at each traversal of the main loop, the algorithm picks

a clause c (the given clause) from U
• if U is empty, the original clause set is satisfiable (and

the clauses in P describe a model)
• if c is the empty clause, the unsatisfiability of the

original clause set U has been shown
• otherwise the algorithm performs all possible

generating inferences between c and other arbitrary
clauses from P
• the generated clauses are added to U and the process

repeats
• different variants of the given-clause algorithm differ in

their handling of contraction (simplification)
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Otter Loop

• used by most provers
• popularized by the theorem prover Otter
• uses aktive and passive clauses for simplifications
• These algorithms have some interesting property: if

the initial set of clauses is maximally simplified (with
respect to itself), then the set of persistent clauses (all
active and passive clauses) is also maximally simplified
(with respect to itself) when starting a new iteration.

Remark
Given clause algorithms distinguish between kept clauses previously
selected for inferences and those not previously selected. Only the former
clauses participate in generating inferences. For this reason they are called
active. The kept clauses still waiting to be selected are called passive.
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Discount Loop
• modify the OTTER saturation algorithm
• inference pace may become dominated by

simplification operations on passive clauses
• passive clauses never participate in simplifications

Some important features are:
• The new clauses are forward simplified by the active

clauses only, the passive clauses do not take part in
this.
• Neither active nor passive clauses are backward

simplified by the retained new clauses.
• After selection of the current clause it is simplified

again by the active clauses and then is itself used to
simplify the active clauses. Again, the passive clauses
are not affected.
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Limited Resource Strategy

• variation of the Otter saturation algorithm
• a time limit is needed
• the main idea is trying to identify those passive and

unprocessed clauses which have no chance to be
selected (regarding the time limit) and discard them
• fundamental difference to redundancy
• measures the time spent to process a clause and

occasionally estimates how the proof search pace
develops towards the time limit
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Our Prover
1: while U 6= ∅ begin
2: c := select best(U)
3: U := U \ {c}; simplify(c, P)
4: if not redundant(c, P) then
5: if c is the empty clause then
6: success; clause set is unsatisfiable
7: else T = ∅
8: foreach p ∈ P do
9: if c simplifies a maximal literal of p such that the set of
10: maximal terms, the set of maximal literals or the
11: number of literals in p potentially changes then
12: P := P \ {p}; T := T ∪ {p}
13: U := U \ {d | d is direct descendant of p}
14: fi
15: simplify(p, (P \ {p}) ∪ {c})
16: done
17: T := T∪ generate(c, P)
18: foreach p ∈ T do
19: p := cheap_simplify(p, P)
20: if not trivial(p, P) then
21: U := U ∪ {p}
22: fi
23: done
24: fi
25: fi
26: end
27: Failure: Initial U is satisfiable, P describes model



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Strategies for
Resolution

Our Prover

Integration of
SMT

Further Work

select_best(U)

• The only open choice point is the selection of the next
clause.
• controlled by one or more heuristic evaluation functions
• A heuristic evaluation function usually maps a clause

to a numerical evaluation.
• the set U is then organized as a priority queue ordered

by the evaluations (new clauses are inserted at the
proper position)
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select_best(U)
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select_best(U) — Clauseweight

• most common evaluation functions are based on
symbole counting
• return number of function symbols and variables

(possibly weighted in some way) of a clause
• preferring clauses with a small number of symbols

Why is this approach successful?
• small clauses are typically more general than larger

clauses
• smaller clauses usually have fewer potential inference

positions — processing smaller clauses is more efficient
• clauses with fewer literal are more likely to degenerate

into the empty clause by appropriate contracting
inferences
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select_best(U) — Refinedweight

• variety of modifications that can further improve this
heuristic
• weight individual terms and literals in a clause in

different ways
• assigning a higher weight to maximal terms and

maximal (or selected) literals
• for unit clauses, this will prefer orientable clauses

(rewrite rules) to unorientable ones — stronger rewrite
relation earlier
• preferring clauses with few (and small) terms eligible

for inferences, the explosion of the search space gets
delayed
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select_best(U) — FIFOweight

• first-in first-out strategy
• new clauses are processed in the same order in which

they are generated
• evaluation function simply returns the value of a

counter that is incremented for each new clause
• pure FIFO performs very badly

Remark
If we ignore contraction rules, this heuristic will always find
the shortest possible proofs (by inference depth), since it
enumerates clauses in order of increasing depth.
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select_best(U)

• one common variation of this general scheme is the
introduction of a second priority queue, sorted by age
(time at which the clause was generated)
• alternating selection of clauses from either queue with

a fixed ratio (the pick-given ratio)
• older and lighter clauses are respectively prioritised

Remark
The theorem prover E found out that they get the best
results with clause selection functions that combine three
or four different priority queues. One of the best ways is to
use two different instances of Refinedweight() with the
remaining queues using a FIFO scheme.
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How to Integrate SMT solvers in
our Prover

1 only forward variable-free clauses to the SMT solver
2 forward clauses which contain only 1 literal, possibly
with variables

3 the variables in clauses could get replaced by new
constants and then the clauses can be forwarded

4 the whole set or a subset gets forwarded
5 break down clauses into variable-disjoint sub-clauses
and pass on these sub-clauses
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Further Work

What we have done so far:
• State of the art
• Throughout theoretical representation of the concepts

needed for the prover
• Collecting strategies to make those concepts

reasonably efficient

What we are doing now:
• Designing the prover (June)
• Implementation of the prover (June till September)
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