Matching in Quantitative Equational Theories
 Seminar: Automated Reasoning \& Formal Methods II

Georg Ehling Temur Kutsia

May 16, 2023

Contents

(1) Recap/Summary: Quantitative Equational Reasoning
(2) Matching Problems
(3) Computing Balls
(4) Outlook

(Quantitative) Equational Theories

Fix a signature Ω and a set of variables X.

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.

(Quantitative) Equational Theories

Fix a signature Ω and a set of variables X.

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.
- \approx is reflexive, transitive, symmetric, stable under substitutions and compatible with Ω-operations

(Quantitative) Equational Theories

Fix a signature Ω and a set of variables X.

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.
- \approx is reflexive, transitive, symmetric, stable under substitutions and compatible with Ω-operations
- Quantitative setting (Mardare-Plotkin-Panangaden 2016): Indexed equations $s \approx_{\varepsilon} t$ for $\varepsilon \in \mathbb{Q} \geqslant 0$

(Quantitative) Equational Theories

Fix a signature Ω and a set of variables X.

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.
- \approx is reflexive, transitive, symmetric, stable under substitutions and compatible with Ω-operations
- Quantitative setting (Mardare-Plotkin-Panangaden 2016): Indexed equations $s \approx_{\varepsilon} t$ for $\varepsilon \in \mathbb{Q} \geqslant 0$
- Intuition: " s is within ε of t "
\rightsquigarrow think of metric spaces: $d(s, t) \leqslant \varepsilon$
- $s \approx_{0} t$ corresponds to $s \approx t$
- If $s \approx_{\varepsilon} t$, then $s \approx_{\delta} t$ for any $\delta>\varepsilon$
- Transitivity has to be replaced by the triangle inequality: $r \approx_{\varepsilon} s$ and $s \approx_{\delta} t$ imply $r \approx_{\varepsilon+\delta} t$.

Inference rules for equational logic

$$
\begin{aligned}
& \overline{E \vdash s \approx t}(\text { Ax. }) \text { for } s \approx t \in E \\
& \frac{E \vdash t \approx t}{}(\text { Refl. }) \quad \\
& \frac{E \vdash s \approx t}{E \vdash s \sigma \approx t \sigma}(\text { Subst. }) \quad \frac{E \vdash s \approx t}{E \vdash t \approx s}(\text { Symm. }) \\
& \frac{E \vdash s_{1} \approx t_{1}, \ldots, E \vdash s_{n} \approx t_{n}}{E \vdash f\left(s_{1}, \ldots, s_{n}\right) \approx f\left(t_{1}, \ldots, t_{n}\right)}(\text { Cong. }) \quad \text { for } f: n \in \Omega
\end{aligned}
$$

Inference rules for (unconditional) quantitative equational

 logic(Ax.) for $s \approx_{\varepsilon} t \in E$

$$
\begin{array}{ll}
\hline E \vdash t \approx_{0} t & \text { (Refl.) } \\
\frac{E \vdash s \approx_{\varepsilon} t}{E \vdash t \approx_{\varepsilon} s}(\text { Symm. }) \\
\frac{E \vdash s \approx_{\varepsilon} t}{E \vdash s \sigma \approx_{\varepsilon} t \sigma}(\text { Subst. }) & \frac{E \vdash s \approx_{\varepsilon} r \quad E \vdash r \approx_{\delta} t}{E \vdash s \approx_{\varepsilon+\delta} t}
\end{array}
$$

$$
\frac{E \vdash s_{1} \approx_{\varepsilon} t_{1}, \ldots, E \vdash s_{n} \approx_{\varepsilon} t_{n}}{E \vdash f\left(s_{1}, \ldots, s_{n}\right) \approx_{\varepsilon} f\left(t_{1}, \ldots, t_{n}\right)} \text { (NExp.) } \quad \text { for } f: n \in \Omega
$$

$$
\frac{E \vdash s \approx_{\varepsilon} t}{E \vdash s \approx_{\varepsilon+\delta} t}(\text { Max. }) \quad \frac{E \vdash s \approx_{\varepsilon^{\prime}} t \mid \varepsilon^{\prime}>\varepsilon}{E \vdash s \approx_{\varepsilon} t}(\text { Cont.) }
$$

Semantics for equational theories

Definition

- Ω-algebra:
$\mathcal{A}=\left(D_{\mathcal{A}},\left\{f_{\mathcal{A}}\right\}_{f \in \Omega}\right)$, where $D_{\mathcal{A}}$ is a nonempty set and for each $f: n \in \Omega, f_{\mathcal{A}}$ is a function $D_{\mathcal{A}}^{n} \rightarrow D_{\mathcal{A}}$.

Semantics for equational theories

Definition

- Ω-algebra:
$\mathcal{A}=\left(D_{\mathcal{A}},\left\{f_{\mathcal{A}}\right\}_{f \in \Omega}\right)$, where $D_{\mathcal{A}}$ is a nonempty set and for each $f: n \in \Omega, f_{\mathcal{A}}$ is a function $D_{\mathcal{A}}^{n} \rightarrow D_{\mathcal{A}}$.
- Model:
$\mathcal{A} \models E$ if

$$
\langle s\rangle_{\mathcal{A}}^{\alpha}=\langle t\rangle_{\mathcal{A}}^{\alpha}
$$

for every equation $s \approx t \in E$ and every variable assignment α.

Semantics for equational theories

Definition

- Ω-algebra:
$\mathcal{A}=\left(D_{\mathcal{A}},\left\{f_{\mathcal{A}}\right\}_{f \in \Omega}\right)$, where $D_{\mathcal{A}}$ is a nonempty set and for each $f: n \in \Omega, f_{\mathcal{A}}$ is a function $D_{\mathcal{A}}^{n} \rightarrow D_{\mathcal{A}}$.
- Model:
$\mathcal{A} \models E$ if

$$
\langle s\rangle_{\mathcal{A}}^{\alpha}=\langle t\rangle_{\mathcal{A}}^{\alpha}
$$

for every equation $s \approx t \in E$ and every variable assignment α.

- Semantic consequence:
$E \models s \approx t$ if

$$
\mathcal{A} \models E \Rightarrow \mathcal{A} \models\{s \approx t\}
$$

for every Ω-algebra \mathcal{A}.

Semantics for equational theories

Definition

- Ω-algebra:
$\mathcal{A}=\left(D_{\mathcal{A}},\left\{f_{\mathcal{A}}\right\}_{f \in \Omega}\right)$, where $D_{\mathcal{A}}$ is a nonempty set and for each $f: n \in \Omega, f_{\mathcal{A}}$ is a function $D_{\mathcal{A}}^{n} \rightarrow D_{\mathcal{A}}$.
- Model:
$\mathcal{A} \models E$ if

$$
\langle s\rangle_{\mathcal{A}}^{\alpha}=\langle t\rangle_{\mathcal{A}}^{\alpha}
$$

for every equation $s \approx t \in E$ and every variable assignment α.

- Semantic consequence:

$$
E \models s \approx t \text { if }
$$

$$
\mathcal{A} \models E \Rightarrow \mathcal{A} \models\{s \approx t\}
$$

for every Ω-algebra \mathcal{A}.

Theorem (Birkhoff 1935)

$E \mid s \approx t \Longleftrightarrow E \vdash s \approx t$.

Semantics for quantitative equational theories

Definition

- Quantitative Ω-algebra:
$\mathcal{A}=\left(D_{\mathcal{A}}, d_{\mathcal{A}},\left\{f_{\mathcal{A}}\right\}_{f \in \Omega}\right)$, where $\left(D_{\mathcal{A}}, d_{\mathcal{A}}\right)$ is an extended metric space and each $f_{\mathcal{A}}$ is a non-expansive function $D_{\mathcal{A}}^{n} \rightarrow D_{\mathcal{A}}$.

Semantics for quantitative equational theories

Definition

- Quantitative Ω-algebra:
$\mathcal{A}=\left(D_{\mathcal{A}}, d_{\mathcal{A}},\left\{f_{\mathcal{A}}\right\}_{f \in \Omega}\right)$, where $\left(D_{\mathcal{A}}, d_{\mathcal{A}}\right)$ is an extended metric space and each $f_{\mathcal{A}}$ is a non-expansive function $D_{\mathcal{A}}^{n} \rightarrow D_{\mathcal{A}}$.
- Quantitative model: $\mathcal{A} \models E$ if

$$
d_{\mathcal{A}}\left(\langle s\rangle_{\mathcal{A}}^{\alpha},\langle t\rangle_{\mathcal{A}}^{\alpha}\right) \leqslant \varepsilon
$$

for every indexed equation $s \approx_{\varepsilon} t \in E$ and every variable assignment α.

Semantics for quantitative equational theories

Definition

- Quantitative Ω-algebra:
$\mathcal{A}=\left(D_{\mathcal{A}}, d_{\mathcal{A}},\left\{f_{\mathcal{A}}\right\}_{f \in \Omega}\right)$, where $\left(D_{\mathcal{A}}, d_{\mathcal{A}}\right)$ is an extended metric space and each $f_{\mathcal{A}}$ is a non-expansive function $D_{\mathcal{A}}^{n} \rightarrow D_{\mathcal{A}}$.
- Quantitative model:
$\mathcal{A} \models E$ if

$$
d_{\mathcal{A}}\left(\langle s\rangle_{\mathcal{A}}^{\alpha},\langle t\rangle_{\mathcal{A}}^{\alpha}\right) \leqslant \varepsilon
$$

for every indexed equation $s \approx_{\varepsilon} t \in E$ and every variable assignment α.

- Semantic consequence: As in the classical case.

Semantics for quantitative equational theories

Definition

- Quantitative Ω-algebra:
$\mathcal{A}=\left(D_{\mathcal{A}}, d_{\mathcal{A}},\left\{f_{\mathcal{A}}\right\}_{f \in \Omega}\right)$, where $\left(D_{\mathcal{A}}, d_{\mathcal{A}}\right)$ is an extended metric space and each $f_{\mathcal{A}}$ is a non-expansive function $D_{\mathcal{A}}^{n} \rightarrow D_{\mathcal{A}}$.
- Quantitative model:
$\mathcal{A} \models E$ if

$$
d_{\mathcal{A}}\left(\langle s\rangle_{\mathcal{A}}^{\alpha},\langle t\rangle_{\mathcal{A}}^{\alpha}\right) \leqslant \varepsilon
$$

for every indexed equation $s \approx_{\varepsilon} t \in E$ and every variable assignment α.

- Semantic consequence: As in the classical case.

Theorem (Mardare-Panangaden-Plotkin 2016)
$E \models s \approx_{\varepsilon} t \Longleftrightarrow E \vdash s \approx_{\varepsilon} t$.

Matching Problems

Let $s, t \in T(\Omega, X)$ be terms, E a set of equations.
Matching problem: $s \lesssim_{E} t$
Find a substitution σ such that $E \vdash s \sigma \approx t$.

Matching Problems

Let $s, t \in T(\Omega, X)$ be terms, E a set of equations.
Matching problem: $s \lesssim ?$
Find a substitution σ such that $E \vdash s \sigma \approx t$.
Let $s, t \in T(\Omega, X)$ be terms, E a set of indexed equations, $\varepsilon \in \mathbb{Q} \geqslant 0$

Quantitative matching problems

- $s \lesssim$? t : Find a substitution σ such that $E \vdash s \sigma \approx_{\varepsilon} t$.
- $s \lesssim ? t$: Find the least $\delta \in \mathbb{Q} \geqslant 0$ such that there exists a substitution σ satisfying $E \vdash s \sigma \approx_{\delta} t$.

For this talk: Focus on the first problem ("fixed-range matching").

Assumptions

- Running assumption: E is finite.

We may assume that all equations from E have indices in \mathbb{N}_{0}.

- Notation: Write $E=E_{0} \sqcup E_{+}$, where

$$
\begin{array}{rlr}
E_{0} & =\left\{s \approx_{\varepsilon} t \in E \mid \varepsilon=0\right\} & \text { ("crisp part") } \\
E_{+} & =\left\{s \approx_{\varepsilon} t \in E \mid \varepsilon>0\right\} & \text { ("quantitative part"). }
\end{array}
$$

- Note: E_{0} can be viewed as a classical (non-quantitative) equational theory.
- Assume that E_{0} has finitary unification type and that a unification algorithm for E_{0} is given.

First steps towards a solution

- Matching problem: $s \underset{\sim}{\lesssim} t$

First steps towards a solution

- Matching problem: $s \lesssim ?$
- Idea: Compute all terms that are within ε of t. Then syntactically match s to each of them.

First steps towards a solution

- Matching problem: $s \lesssim ?$
- Idea: Compute all terms that are within ε of t. Then syntactically match s to each of them.
- That is: compute $\left\{u \in T(\Omega, X) \mid E \vdash u \approx_{\varepsilon} t\right\}=: B_{\varepsilon}(t)$.

First steps towards a solution

- Matching problem: $s \lesssim ?$
- Idea: Compute all terms that are within ε of t. Then syntactically match s to each of them.
- That is: compute $\left\{u \in T(\Omega, X) \mid E \vdash u \approx_{\varepsilon} t\right\}=: B_{\varepsilon}(t)$.
- Problem: $B_{\varepsilon}(t)$ need not be finite!

First steps towards a solution

- Matching problem: $s \lesssim ?$
- Idea: Compute all terms that are within ε of t. Then syntactically match s to each of them.
- That is: compute $\left\{u \in T(\Omega, X) \mid E \vdash u \approx_{\varepsilon} t\right\}=: B_{\varepsilon}(t)$.
- Problem: $B_{\varepsilon}(t)$ need not be finite!

Examples

(1) $E=\left\{f(x) \approx_{1} g(x, y)\right\}, t=f(a)$, where $a \in \Omega$ is a constant. Then: $E \vdash f(a) \approx_{1} g(a, y)$ by (Subst.)
\Rightarrow every instance of $g(a, y)$ is in $B_{1}(f(a))$ by (Subst.)
$\Rightarrow B_{1}(t)$ is infinite.
(2) $E=\left\{x \approx_{0} f(x)\right\}, t=a$ (constant).

By (Triang.), $f^{n}(a) \in B_{0}(a)$ for every n
$\Rightarrow B_{0}(t)$ is infinite.

First steps towards a solution

To guarantee finiteness, compute a finite representation $\mathcal{R}_{\varepsilon}(t)$ of $B_{\varepsilon}(t)$ that contains:

- non-ground terms from $B_{\varepsilon}(t)$, but not all of their instances
- representatives of terms up to E_{0}

First steps towards a solution

To guarantee finiteness, compute a finite representation $\mathcal{R}_{\varepsilon}(t)$ of $B_{\varepsilon}(t)$ that contains:

- non-ground terms from $B_{\varepsilon}(t)$, but not all of their instances
- representatives of terms up to E_{0}

Examples, revisited

(1) $E=\left\{f(x) \approx_{1} g(x, y)\right\}, t=f(a)$, where $a \in \Omega$ is a constant. $B_{1}(t)$ is infinite.
\rightsquigarrow take $\mathcal{R}_{1}(t)=\{f(a), g(a, y)\}$ instead!
(2) $E=\left\{x \approx_{0} f(x)\right\}, t=a$ (constant).
$B_{0}(t)$ is infinite.
\rightsquigarrow take $\mathcal{R}_{0}(a)=\{a\}$ instead!

Compact representation of the ball

Definition

Define $\mathcal{R}_{\varepsilon}(x):=\{x\}$ if x is a variable, and otherwise, set

$$
\mathcal{R}_{\varepsilon}(t)=\{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, 0<\zeta \leqslant \varepsilon, t=f\left(t_{1}, \ldots, t_{n}\right), s_{i} \in \mathcal{R}_{\zeta}\left(t_{i}\right)}} \mathcal{R}_{\varepsilon-\zeta}\left(f\left(s_{1}, \ldots, s_{n}\right)\right) \cup \bigcup_{\substack{1 \approx_{\delta} r \in E_{+}, \delta \leqslant \varepsilon, \sigma \in \operatorname{mcu}_{E_{0}}(I, t)}} \mathcal{R}_{\varepsilon-\delta}(r \sigma),
$$

where

- $I \approx_{\delta} r$ is a fresh, unoriented variant of an equation in E_{+}
- $\operatorname{mcu}_{E_{0}}(I, t)$ is a minimal complete set of E_{0}-unifiers of I and t

Compact representation of the ball

Definition

Define $\mathcal{R}_{\varepsilon}(x):=\{x\}$ if x is a variable, and otherwise, set

$$
\mathcal{R}_{\varepsilon}(t)=\{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, 0<\zeta \leqslant \varepsilon, t=f\left(t_{1}, \ldots, t_{n}\right), s_{i} \in \mathcal{R}_{\zeta}\left(t_{i}\right)}} \mathcal{R}_{\varepsilon-\zeta}\left(f\left(s_{1}, \ldots, s_{n}\right)\right) \cup \bigcup_{\substack{ \\\approx_{\delta} r \in E_{+} \\ \delta \leqslant \varepsilon, \sigma \in \operatorname{mcu}_{E_{0}}(I, t)}} \mathcal{R}_{\varepsilon-\delta}(r \sigma)
$$

where

- $I \approx_{\delta} r$ is a fresh, unoriented variant of an equation in E_{+}
- $\operatorname{mcu}_{E_{0}}(I, t)$ is a minimal complete set of E_{0}-unifiers of I and t

Remarks

- $\mathcal{R}_{\varepsilon}(t)$ is finite and defined uniquely up to renaming variables.
- $\mathcal{R}_{0}(t)=\{t\}$
- If $\varepsilon \leqslant \delta$, then $\mathcal{R}_{\varepsilon}(t) \subseteq \mathcal{R}_{\delta}(t)$

Definition

$$
\mathcal{R}_{\varepsilon}(t)=\{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, 0<\zeta \leqslant \varepsilon, t=f\left(t_{1}, \ldots, t_{n}\right), s_{i} \in \mathcal{R}_{\zeta}\left(t_{i}\right)}} \mathcal{R}_{\varepsilon-\zeta}\left(f\left(s_{1}, \ldots, s_{n}\right)\right) \cup \bigcup_{\substack{1 \approx_{\delta r} r \in E_{+}, \delta \leqslant \varepsilon, \sigma \in \operatorname{mcu}_{E_{0}}(l, t)}} \mathcal{R}_{\varepsilon-\delta}(r \sigma)
$$

Examples

(1) $E=\left\{f(x, y) \approx_{1} g(x), f(x, a) \approx_{1} h(x)\right\}$.

Solve $h(x) \lesssim_{2} g(b)$.

Definition

$$
\mathcal{R}_{\varepsilon}(t)=\{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, 0<\zeta \leqslant \varepsilon, t=f\left(t_{1}, \ldots, t_{n}\right), s_{i} \in \mathcal{R}_{\zeta}\left(t_{i}\right)}} \mathcal{R}_{\varepsilon-\zeta}\left(f\left(s_{1}, \ldots, s_{n}\right)\right) \cup \bigcup_{\substack{1 \approx \delta r \in E_{+}, \delta \leqslant \varepsilon, \sigma \in \operatorname{mcu}_{E_{0}}(1, t)}} \mathcal{R}_{\varepsilon-\delta}(r \sigma)
$$

Examples

(1) $E=\left\{f(x, y) \approx_{1} g(x), f(x, a) \approx_{1} h(x)\right\}$.

Solve $h(x) \lesssim 2 g(b)$.

$$
\mathcal{R}_{2}(g(b))=\{g(b), f(b, y), h(b)\}
$$

Definition

$$
\mathcal{R}_{\varepsilon}(t)=\{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, 0<\zeta \leqslant \varepsilon, t=f\left(t_{1}, \ldots, t_{n}\right), s_{i} \in \mathcal{R}_{\zeta}\left(t_{i}\right)}} \mathcal{R}_{\varepsilon-\zeta}\left(f\left(s_{1}, \ldots, s_{n}\right)\right) \cup \bigcup_{\substack{1 \approx \delta r \in E_{+}, \delta \leqslant \varepsilon, \sigma \in \operatorname{mcu}_{E_{0}}(1, t)}} \mathcal{R}_{\varepsilon-\delta}(r \sigma)
$$

Examples

(1) $E=\left\{f(x, y) \approx_{1} g(x), f(x, a) \approx_{1} h(x)\right\}$.

Solve $h(x) \lesssim 2 g(b)$.

$$
\mathcal{R}_{2}(g(b))=\{g(b), f(b, y), h(b)\}
$$

$\rightsquigarrow \sigma=\{x \mapsto b\}$ is a solution

Definition

$$
\mathcal{R}_{\varepsilon}(t)=\{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, 0<\zeta \leqslant \varepsilon, t=f\left(t_{1}, \ldots, t_{n}\right), s_{i} \in \mathcal{R}_{\zeta}\left(t_{i}\right)}} \mathcal{R}_{\varepsilon-\zeta}\left(f\left(s_{1}, \ldots, s_{n}\right)\right) \cup \bigcup_{\substack{1 \approx_{\delta r} r \in E_{+}, \delta \leqslant \varepsilon, \sigma \in \operatorname{mcu}_{E_{0}}(l, t)}} \mathcal{R}_{\varepsilon-\delta}(r \sigma)
$$

Examples

(2) $E=\left\{f(x, y) \approx_{0} f(y, x), f(x, y) \approx_{1} g(x, y)\right\}$.

Solve $f(g(b, z), z) \lesssim_{1} f(f(a, b), a)$.

Definition

$$
\mathcal{R}_{\varepsilon}(t)=\{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, 0<\zeta \leqslant \varepsilon, t=f\left(t_{1}, \ldots, t_{n}\right), s_{i} \in \mathcal{R}_{\zeta}\left(t_{i}\right)}} \mathcal{R}_{\varepsilon-\zeta}\left(f\left(s_{1}, \ldots, s_{n}\right)\right) \cup \bigcup_{\substack{1 \cong_{\delta} r \in E_{+}, \delta \leqslant \varepsilon, \sigma \in \operatorname{mcu}_{E_{0}}(I, t)}} \mathcal{R}_{\varepsilon-\delta}(r \sigma)
$$

Examples

(2) $E=\left\{f(x, y) \approx_{0} f(y, x), f(x, y) \approx_{1} g(x, y)\right\}$.

Solve $f(g(b, z), z) \lesssim_{1} f(f(a, b), a)$.

$$
\begin{aligned}
\mathcal{R}_{1}(f(f(a, b), a))= & \{f(f(a, b), a), f(g(a, b), a), f(g(b, a), a), \\
& g(a, f(a, b)), g(f(a, b), a)\}
\end{aligned}
$$

Definition

$$
\mathcal{R}_{\varepsilon}(t)=\{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, 0<\zeta \leqslant \varepsilon, t=f\left(t_{1}, \ldots, t_{n}\right), s_{i} \in \mathcal{R}_{\zeta}\left(t_{i}\right)}} \mathcal{R}_{\varepsilon-\zeta}\left(f\left(s_{1}, \ldots, s_{n}\right)\right) \cup \bigcup_{\substack{I \approx_{\delta} r \in E_{+}, \delta \leqslant \varepsilon, \sigma \in \operatorname{mcu}_{E_{0}}(I, t)}} \mathcal{R}_{\varepsilon-\delta}(r \sigma)
$$

Examples

(2) $E=\left\{f(x, y) \approx_{0} f(y, x), f(x, y) \approx_{1} g(x, y)\right\}$.

Solve $f(g(b, z), z) \lesssim_{1} f(f(a, b), a)$.

$$
\begin{aligned}
\mathcal{R}_{1}(f(f(a, b), a))= & \{f(f(a, b), a), f(g(a, b), a), f(g(b, a), a), \\
& g(a, f(a, b)), g(f(a, b), a)\}
\end{aligned}
$$

$\rightsquigarrow \sigma=\{z \mapsto a\}$ is a solution.

First results

Proposition

If $E=E_{+}$is regular and t is a ground term, then $\mathcal{R}_{\varepsilon}(t)=B_{\varepsilon}(t)$.
In particular: $E \vdash s \sigma \approx_{\varepsilon} t \Longleftrightarrow s \sigma \in B_{\varepsilon}(t) \Longleftrightarrow s \sigma \in \mathcal{R}_{\varepsilon}(t)$.

First results

Proposition

If $E=E_{+}$is regular and t is a ground term, then $\mathcal{R}_{\varepsilon}(t)=B_{\varepsilon}(t)$.
In particular: $E \vdash s \sigma \approx_{\varepsilon} t \Longleftrightarrow s \sigma \in B_{\varepsilon}(t) \Longleftrightarrow s \sigma \in \mathcal{R}_{\varepsilon}(t)$.

Quantitative matching algorithm 1:

Input: Regular $E=E_{+} ; E$-matching problem $s \lesssim \varepsilon t$ with t ground.
Output: A complete set of solutions.
(1) $S \leftarrow \emptyset$
(2) Compute $\mathcal{R}_{\varepsilon}(t)$
(3) For each $u \in \mathcal{R}_{\varepsilon}(t)$:
(9) $S \leftarrow S \cup\{$ syntactic matchers of s to $u\}$
(5) Return S

First results

Proposition

If $E=E_{+}$is regular and t is a ground term, then $\mathcal{R}_{\varepsilon}(t)=B_{\varepsilon}(t)$.
In particular: $E \vdash s \sigma \approx_{\varepsilon} t \Longleftrightarrow s \sigma \in B_{\varepsilon}(t) \Longleftrightarrow s \sigma \in \mathcal{R}_{\varepsilon}(t)$.

Quantitative matching algorithm 1:

Input: Regular $E=E_{+} ; E$-matching problem $s \lesssim_{\varepsilon} t$ with t ground.
Output: A complete set of solutions.
(1) $S \leftarrow \emptyset$
(2) Compute $\mathcal{R}_{\varepsilon}(t)$
(3) For each $u \in \mathcal{R}_{\varepsilon}(t)$:
(9) $S \leftarrow S \cup\{$ syntactic matchers of s to $u\}$
(0) Return S

Corollary
The above algorithm is sound and complete.

Relaxing the assumptions: non-regular E_{+}

Consider the case where $E=E_{+}$need not be regular.

Example

$E=\left\{f(x) \approx_{1} g(x, y)\right\}$; solve $g(x, b) \lesssim_{1}^{?} f(a)$.
$\mathcal{R}_{1}(f(a))=\{f(a), g(a, y)\}$.

Relaxing the assumptions: non-regular E_{+}

Consider the case where $E=E_{+}$need not be regular.

Example

$E=\left\{f(x) \approx_{1} g(x, y)\right\}$; solve $g(x, b) \lesssim_{1} f(a)$.
$\mathcal{R}_{1}(f(a))=\{f(a), g(a, y)\}$.
Syntactic matching does not succeed.
The solution $\sigma=\{x \mapsto a\}$ can be found via syntactic unification of $g(x, b)$ and $g(a, y)$.

Relaxing the assumptions: non-regular E_{+}

Consider the case where $E=E_{+}$need not be regular.

Example

$E=\left\{f(x) \approx_{1} g(x, y)\right\}$; solve $g(x, b) \lesssim_{1}^{?} f(a)$.
$\mathcal{R}_{1}(f(a))=\{f(a), g(a, y)\}$.
Syntactic matching does not succeed.
The solution $\sigma=\{x \mapsto a\}$ can be found via syntactic unification of $g(x, b)$ and $g(a, y)$.

Desired Proposition

Assume that $E=E_{+}$and s, t are terms, t ground. Then $E \vdash s \approx_{\varepsilon} t \Longleftrightarrow s=u \tau$ for some $u \in \mathcal{R}_{\varepsilon}(t)$ and some substitution τ.

Assuming the proposition, we could replace syntactic matchers by syntactic unifiers in the algorithm!

Relaxing the assumptions: non-empty E_{0}

Now, consider non-empty E_{0}.
Recall: $\mathcal{R}_{\varepsilon}(t)$ represents terms up to equality modulo E_{0}.
By assumption, we know how to solve unification in E_{0}. Can we just replace syntactic unification by unification modulo E_{0} to solve the matching problem in E ?

Example 1

$E=\left\{f(a, x) \approx_{1} g(x, a), a \approx_{0} b\right\}$.
Solve $f(b, y) \lesssim_{1} g(c, b)$.
$\mathcal{R}_{1}(g(c, b))=\{g(c, b), f(a, c)\}$.
$\sigma=\{y \mapsto c\}$ is an E_{0}-unifier of $f(b, y)$ and $f(a, c)$.

Relaxing the assumptions: non-empty E_{0}

Now, consider non-empty E_{0}.
Recall: $\mathcal{R}_{\varepsilon}(t)$ represents terms up to equality modulo E_{0}.
By assumption, we know how to solve unification in E_{0}. Can we just replace syntactic unification by unification modulo E_{0} to solve the matching problem in E ?

Example 2

$E=\left\{f(a, x) \approx_{0} g(x), a \approx_{1} b\right\} ;$ solve $f(b, y) \lesssim_{1} g(a)$.
Then $\mathcal{R}_{1}(g(a))=\{g(a), g(b)\}$.
There is no E_{0}-unifier!
To find the solution, one would also need to compute
$\tilde{\mathcal{R}}_{1}(f(b, y))=\{f(b, y), f(a, y)\}$

Outlook

Possible future work:

- Results for matching in the more general cases: non-regular E_{+}, non-empty E_{0}
- Different (e.g., rule-based) approaches for quantitative matching
- Matching in conditional theories
- Other equational problems in the quantitative setting (unification, anti-unification)
- Different versions of quantitative equational reasoning, e.g. Gavazzo-Di Florio (2023)

References

[1] Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon Plotkin. "Quantitative Equational Reasoning". In: Foundations of Probabilistic Programming. Ed. by Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. Cambridge University Press, 2020, pp. 333-360.
[2] Garrett Birkhoff and P. Hall. "On the Structure of Abstract Algebras". In: Mathematical Proceedings of the Cambridge Philosophical Society 31 (1935), pp. 433-454.
[3] Francesco Gavazzo and Cecilia Di Florio. "Elements of Quantitative Rewriting". In: Proc. ACM Program. Lang. 7.POPL (Jan. 2023).
[4] Radu Mardare, Prakash Panangaden, and Gordon Plotkin. "Quantitative Algebraic Reasoning". In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '16. New York, NY, USA: Association for Computing Machinery, 2016, pp. 700-709.

Inference rules for equational logic

(Refl) $\emptyset \vdash s \approx s \in \mathcal{U}$
(Symm) $\{s \approx t\} \vdash t \approx s \in \mathcal{U}$
(Trans) $\{s \approx t, t \approx u\} \vdash s \approx u \in \mathcal{U}$
(Cong) $\left\{s_{1} \approx t_{1}, \ldots, s_{n} \approx t_{n}\right\} \vdash f\left(s_{1}, \ldots, s_{n}\right) \approx f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{U}$ for any $f: n \in \Omega$.
(Subst) If $\Gamma \vdash \Delta \in \mathcal{U}$, then $\Gamma \sigma \vdash \Delta \sigma \in \mathcal{U}$ for any substitution σ
(Assum) If $s \approx t \in E$, then $E \vdash s \approx t \in \mathcal{U}$
(Cut) If $\Gamma \vdash \Delta \in \mathcal{U}$ and $\Delta \vdash \Theta \in \mathcal{U}$, then $\Gamma \vdash \Theta \in \mathcal{U}$.

Inference rules for quantitative equational logic

(Refl) $\emptyset \vdash s \approx_{\varepsilon} s \in \mathcal{U}$
(Symm) $\left\{s \approx_{\varepsilon} t\right\} \vdash t \approx_{\varepsilon} s \in \mathcal{U}$
(Triang) $\left\{s \approx_{\varepsilon} t, t \approx_{\delta} u\right\} \vdash s \approx_{\varepsilon+\delta} u \in \mathcal{U}$
(Max) $\left\{s \approx_{\varepsilon} t\right\} \vdash s \approx_{\delta} t \in \mathcal{U}$ for every $\delta \geqslant \varepsilon$
(NExp) $\left\{s_{1} \approx_{\varepsilon} t_{1}, \ldots, s_{n} \approx_{\varepsilon} t_{n}\right\} \vdash f\left(s_{1}, \ldots, s_{n}\right) \approx_{\varepsilon} f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{U}$ for any $f: n \in \Omega$.
(Cont) $\left\{s \approx_{\varepsilon^{\prime}} t \mid \varepsilon^{\prime}>\varepsilon\right\} \vdash s \approx_{\varepsilon} t$.
(Subst) If $\Gamma \vdash \Delta \in \mathcal{U}$, then $\Gamma \sigma \vdash \Delta \sigma \in \mathcal{U}$ for any substitution σ
(Assum) If $s \approx_{\varepsilon} t \in E$, then $E \vdash s \approx_{\varepsilon} t \in \mathcal{U}$
(Cut) If $\Gamma \vdash \Delta \in \mathcal{U}$ and $\Delta \vdash \Theta \in \mathcal{U}$, then $\Gamma \vdash \Theta \in \mathcal{U}$.

