Matching in Quantitative Equational Theories Seminar: Automated Reasoning & Formal Methods II

Georg Ehling

Temur Kutsia

May 16, 2023

Recap/Summary: Quantitative Equational Reasoning ●೧೦೧೦	Matching Problems	Computing Balls	Outlook O	References ດດ
(Quantitative) Equation	al Theories			

• "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.

Recap/Summary: Quantitative Equational Reasoning ●ດດດດ	Matching Problems	Computing Balls	Outlook O	References 00
(Quantitative) Equation	nal Theories	5		

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.
 - \approx is reflexive, transitive, symmetric, stable under substitutions and compatible with $\Omega\text{-}operations$

Recap/Summary: Quantitative Equational Reasoning ●ດດດດ	Matching Problems	Computing Balls	Outlook O	References 00
(Quantitative) Equation	nal Theories	5		

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.
 - \approx is reflexive, transitive, symmetric, stable under substitutions and compatible with $\Omega\text{-}operations$
- Quantitative setting (Mardare-Plotkin-Panangaden 2016): Indexed equations s ≈_ε t for ε ∈ Q_{≥0}

Recap/Summary: Quantitative Equational Reasoning ●ດດດດ	Matching Problems	Computing Balls	Outlook O	References 00
(Quantitative) Equatio	nal Theorie	S		

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.
 - \approx is reflexive, transitive, symmetric, stable under substitutions and compatible with $\Omega\text{-}operations$
- Quantitative setting (Mardare-Plotkin-Panangaden 2016): Indexed equations $s \approx_{\varepsilon} t$ for $\varepsilon \in \mathbb{Q}_{\geq 0}$
 - Intuition: "s is within ε of t"

 \rightsquigarrow think of metric spaces: $d(s,t)\leqslant arepsilon$

- $s \approx_0 t$ corresponds to $s \approx t$
- If $s \approx_{\varepsilon} t$, then $s \approx_{\delta} t$ for any $\delta > \varepsilon$
- Transitivity has to be replaced by the triangle inequality: $r \approx_{\varepsilon} s$ and $s \approx_{\delta} t$ imply $r \approx_{\varepsilon+\delta} t$.

Recap/Summary: Quantitative Equational Reasoning ೧●೧೧೧	Matching Problems	Computing Balls	Outlook O	References ດດ

Inference rules for equational logic

$$\frac{\overline{E} \vdash s \approx t}{E \vdash t \approx t} (Ax.) \quad \text{for } s \approx t \in E$$

$$\frac{\overline{E} \vdash s \approx t}{E \vdash t \approx s} (Carrow (Carrow$$

Recap/Summary: Quantitative Equational Reasoning

Natching Problems

Computing Balls

Outlook References ວິດດ

Inference rules for (unconditional) quantitative equational logic

$$\frac{\overline{E} \vdash s \approx_{\varepsilon} t}{\overline{E} \vdash t \approx_{0} t} (Ax.) \quad \text{for } s \approx_{\varepsilon} t \in E$$

$$\frac{\overline{E} \vdash s \approx_{\varepsilon} t}{\overline{E} \vdash t \approx_{0} t} (Refl.) \qquad \frac{\overline{E} \vdash s \approx_{\varepsilon} t}{\overline{E} \vdash t \approx_{\varepsilon} s} (Symm.)$$

$$\frac{\overline{E} \vdash s \approx_{\varepsilon} t}{\overline{E} \vdash s \approx_{\varepsilon} t \sigma} (Subst.) \qquad \frac{\overline{E} \vdash s \approx_{\varepsilon} r}{\overline{E} \vdash s \approx_{\varepsilon + \delta} t} (Triang.)$$

$$\frac{\overline{E} \vdash s \approx_{\varepsilon} t_{1}, \dots, \overline{E} \vdash s_{n} \approx_{\varepsilon} t_{n}}{\overline{E} \vdash f(s_{1}, \dots, s_{n}) \approx_{\varepsilon} f(t_{1}, \dots, t_{n})} (NExp.) \quad \text{for } f : n \in \Omega$$

$$\frac{\overline{E} \vdash s \approx_{\varepsilon} t}{\overline{E} \vdash s \approx_{\varepsilon + \delta} t} (Max.) \qquad \frac{\overline{E} \vdash s \approx_{\varepsilon'} t \mid \varepsilon' > \varepsilon}{\overline{E} \vdash s \approx_{\varepsilon} t} (Cont.)$$

Recap/Summa 000●0	ıry: Quantit	ative Equational	Reasoning	Matching F	Problems	Computing Balls	Outlook O	References 00
~		~						

Definition

Ω-algebra:

 $\mathcal{A} = (D_{\mathcal{A}}, \{f_{\mathcal{A}}\}_{f \in \Omega}), \text{ where } D_{\mathcal{A}} \text{ is a nonempty set and for each } f : n \in \Omega, f_{\mathcal{A}} \text{ is a function } D_{\mathcal{A}}^n \to D_{\mathcal{A}}.$

Recap/Summary: 000●0	Quantitative Equational Reas	oning	Matching Problems ດດດດ	Computing Balls	Outlook O	References 00
_						

Definition

Ω-algebra:

 $\begin{aligned} \mathcal{A} &= (D_{\mathcal{A}}, \{f_{\mathcal{A}}\}_{f \in \Omega}), \text{ where } D_{\mathcal{A}} \text{ is a nonempty set and for each } \\ f \colon n \in \Omega, \ f_{\mathcal{A}} \text{ is a function } D_{\mathcal{A}}^n \to D_{\mathcal{A}}. \end{aligned}$

• Model: $\mathcal{A} \models E$ if

$$\langle s
angle^{lpha}_{\mathcal{A}} = \langle t
angle^{lpha}_{\mathcal{A}}$$

for every equation $s \approx t \in E$ and every variable assignment α .

Recap/Summary: Quantitative Equational Reasoning ೧೧೧●೧	Matching Problems	Computing Balls	Outlook O	References 00

Definition

Ω-algebra:

 $\begin{aligned} \mathcal{A} &= (D_{\mathcal{A}}, \{f_{\mathcal{A}}\}_{f \in \Omega}), \text{ where } D_{\mathcal{A}} \text{ is a nonempty set and for each } \\ f \colon n \in \Omega, \ f_{\mathcal{A}} \text{ is a function } D_{\mathcal{A}}^n \to D_{\mathcal{A}}. \end{aligned}$

• Model: $\mathcal{A} \models E$ if

$$\langle s \rangle^{\alpha}_{\mathcal{A}} = \langle t \rangle^{\alpha}_{\mathcal{A}}$$

for every equation $s \approx t \in E$ and every variable assignment α .

• Semantic consequence: $E \models s \approx t$ if

$$\mathcal{A} \models E \Rightarrow \mathcal{A} \models \{s \approx t\}$$

for every Ω -algebra \mathcal{A} .

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls	Outlook	References
೧೦೧●೧	ດດດດ		O	00

Definition

Ω-algebra:

 $\begin{aligned} \mathcal{A} &= (D_{\mathcal{A}}, \{f_{\mathcal{A}}\}_{f \in \Omega}), \text{ where } D_{\mathcal{A}} \text{ is a nonempty set and for each } \\ f \colon n \in \Omega, \ f_{\mathcal{A}} \text{ is a function } D_{\mathcal{A}}^n \to D_{\mathcal{A}}. \end{aligned}$

• Model: $\mathcal{A} \models E$ if

$$\langle s \rangle^{\alpha}_{\mathcal{A}} = \langle t \rangle^{\alpha}_{\mathcal{A}}$$

for every equation $s \approx t \in E$ and every variable assignment α .

• Semantic consequence: $E \models s \approx t$ if

$$\mathcal{A} \models E \Rightarrow \mathcal{A} \models \{s \approx t\}$$

for every Ω -algebra \mathcal{A} .

Theorem (Birkhoff 1935)

$$E \models s \approx t \iff E \vdash s \approx t.$$

Recap/Summary:	Quantitative	Equational	Reasoning
00000			

References

Semantics for quantitative equational theories

Definition

Quantitative Ω-algebra:

 $\mathcal{A} = (D_{\mathcal{A}}, d_{\mathcal{A}}, \{f_{\mathcal{A}}\}_{f \in \Omega})$, where $(D_{\mathcal{A}}, d_{\mathcal{A}})$ is an extended metric space and each $f_{\mathcal{A}}$ is a *non-expansive* function $D_{\mathcal{A}}^n \to D_{\mathcal{A}}$.

Recap/Summary:	Quantitative	Equational	Reasoning	
00000				

Semantics for quantitative equational theories

Definition

- Quantitative Ω -algebra: $\mathcal{A} = (D_{\mathcal{A}}, d_{\mathcal{A}}, \{f_{\mathcal{A}}\}_{f \in \Omega})$, where $(D_{\mathcal{A}}, d_{\mathcal{A}})$ is an extended metric space and each $f_{\mathcal{A}}$ is a *non-expansive* function $D_{\mathcal{A}}^n \to D_{\mathcal{A}}$.
- Quantitative model:
 - $\mathcal{A} \models E$ if

$$d_{\mathcal{A}}(\langle s \rangle^{lpha}_{\mathcal{A}}, \langle t \rangle^{lpha}_{\mathcal{A}}) \leqslant \varepsilon$$

for every indexed equation $s \approx_{\varepsilon} t \in E$ and every variable assignment α .

Recap/Summary:	Quantitative	Equational	Reasoning	
00000				

Semantics for quantitative equational theories

Definition

- Quantitative Ω-algebra:
 A = (D_A, d_A, {f_A}_{f∈Ω}), where (D_A, d_A) is an extended metric space and each f_A is a non-expansive function Dⁿ_A → D_A.
- Quantitative model:
 - $\mathcal{A} \models E$ if

$$d_{\mathcal{A}}(\langle s
angle^{lpha}_{\mathcal{A}}, \langle t
angle^{lpha}_{\mathcal{A}}) \leqslant arepsilon$$

for every indexed equation $s\approx_{\varepsilon}t\in E$ and every variable assignment $\alpha.$

• Semantic consequence: As in the classical case.

Recap/Summary:	Quantitative	Equational	Reasoning	
00000				

References

Semantics for quantitative equational theories

Definition

- Quantitative Ω-algebra:
 A = (D_A, d_A, {f_A}_{f∈Ω}), where (D_A, d_A) is an extended metric space and each f_A is a non-expansive function Dⁿ_A → D_A.
- Quantitative model:
 - $\mathcal{A} \models E$ if

$$d_{\mathcal{A}}(\langle s
angle^{lpha}_{\mathcal{A}}, \langle t
angle^{lpha}_{\mathcal{A}}) \leqslant arepsilon$$

for every indexed equation $s\approx_{\varepsilon}t\in E$ and every variable assignment $\alpha.$

• Semantic consequence: As in the classical case.

Theorem (Mardare-Panangaden-Plotkin 2016)

 $E \models s \approx_{\varepsilon} t \iff E \vdash s \approx_{\varepsilon} t.$

Recap/Summary: Quantitative Equational Reasoning	Matching Problems ●೧೧೧	Computing Balls	Outlook O	References 00
Matching Problems				

Let $s, t \in T(\Omega, X)$ be terms, E a set of equations.

Matching problem: $s \lesssim^{?}_{E} t$

Find a substitution σ such that $E \vdash s\sigma \approx t$.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls	Outlook	References
ດດດດດ	●000	ဂဂဂဂဂ	O	ດດ
Matching Problems				

Let $s, t \in T(\Omega, X)$ be terms, E a set of equations.

Matching problem: $s \leq_E^? t$

Find a substitution σ such that $E \vdash s\sigma \approx t$.

Let $s,t\in T(\Omega,X)$ be terms, E a set of indexed equations, $arepsilon\in\mathbb{Q}_{\geqslant0}$

Quantitative matching problems

•
$$s \leq_{\varepsilon}^{?} t$$
: Find a substitution σ such that $E \vdash s\sigma \approx_{\varepsilon} t$.

• $s \leq_{?}^{?} t$: Find the least $\delta \in \mathbb{Q}_{\geq 0}$ such that there exists a substitution σ satisfying $E \vdash s\sigma \approx_{\delta} t$.

For this talk: Focus on the first problem ("fixed-range matching").

Recap/Summary: Quantitative Equational Reasoning	Matching Problems ∩●∩∩	Computing Balls	Outlook O	References ດດ
Assumptions				

- Running assumption: *E* is finite.
 We may assume that all equations from *E* have indices in ℕ₀.
- Notation: Write $E = E_0 \sqcup E_+$, where

$$\begin{split} E_0 &= \{ s \approx_{\varepsilon} t \in E \mid \varepsilon = 0 \} & (\text{``crisp part''}), \\ E_+ &= \{ s \approx_{\varepsilon} t \in E \mid \varepsilon > 0 \} & (\text{``quantitative part''}). \end{split}$$

- Note: *E*₀ can be viewed as a classical (non-quantitative) equational theory.
- Assume that E_0 has finitary unification type and that a unification algorithm for E_0 is given.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems 00●0	Computing Balls	Outlook O	References ດດ
First steps towards a sol	ution			

• Matching problem: $s \leq_{\varepsilon}^{?} t$

Recap/Summary: Quantitative Equational Reasoning	Matching Problems ೧೧●೧	Computing Balls	Outlook O	References 00
First steps towards a sol	ution			

- Matching problem: $s \lesssim_{\varepsilon}^{?} t$
- Idea: Compute all terms that are within ε of t. Then syntactically match s to each of them.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems 00●0	Computing Balls	Outlook O	References 00
First steps towards a sol	ution			

- Matching problem: $s \lesssim_{\varepsilon}^{?} t$
- Idea: Compute all terms that are within ε of t. Then syntactically match s to each of them.
- That is: compute $\{u \in T(\Omega, X) \mid E \vdash u \approx_{\varepsilon} t\} =: B_{\varepsilon}(t)$.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems 00●0	Computing Balls	Outlook O	References 00
First steps towards a sol	ution			

- Matching problem: $s \lesssim_{\varepsilon}^{?} t$
- Idea: Compute all terms that are within ε of t. Then syntactically match s to each of them.
- That is: compute $\{u \in T(\Omega, X) \mid E \vdash u \approx_{\varepsilon} t\} =: B_{\varepsilon}(t)$.
- Problem: $B_{\varepsilon}(t)$ need not be finite!

Recap/Summary: Quantitative Equational Reasoning	Matching Problems ೧೧●೧	Computing Balls	Outlook O	References 00
First steps towards a sol	ution			

- Matching problem: $s \lesssim_{\varepsilon}^{?} t$
- Idea: Compute all terms that are within ε of t. Then syntactically match s to each of them.
- That is: compute $\{u \in T(\Omega, X) \mid E \vdash u \approx_{\varepsilon} t\} =: B_{\varepsilon}(t)$.
- Problem: $B_{\varepsilon}(t)$ need not be finite!

•
$$E = \{f(x) \approx_1 g(x, y)\}, t = f(a), \text{ where } a \in \Omega \text{ is a constant}$$

Then: $E \vdash f(a) \approx_1 g(a, y)$ by (Subst.)
 \Rightarrow every instance of $g(a, y)$ is in $B_1(f(a))$ by (Subst.)
 $\Rightarrow B_1(t)$ is infinite.

2
$$E = \{x \approx_0 f(x)\}, t = a \text{ (constant)}.$$

By (Triang.), $f^n(a) \in B_0(a)$ for every $n \Rightarrow B_0(t)$ is infinite.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls	Outlook O	References 00
First steps towards a sol	ution			

To guarantee finiteness, compute a finite representation $\mathcal{R}_{\varepsilon}(t)$ of $B_{\varepsilon}(t)$ that contains:

- non-ground terms from $B_{\varepsilon}(t)$, but not all of their instances
- representatives of terms up to E_0

Recap/Summary: Quantitative Equational Reasoning	Matching Problems ೧೧೧●	Computing Balls	Outlook O	References 00
First steps towards a sol	ution			

To guarantee finiteness, compute a finite representation $\mathcal{R}_{\varepsilon}(t)$ of $B_{\varepsilon}(t)$ that contains:

- non-ground terms from $B_{\varepsilon}(t)$, but not all of their instances
- representatives of terms up to E_0

Examples, revisited

•
$$E = \{f(x) \approx_1 g(x, y)\}, t = f(a)$$
, where $a \in \Omega$ is a constant.
 $B_1(t)$ is infinite.

$$\leadsto$$
 take $\mathcal{R}_1(t) = \{f(a), g(a, y)\}$ instead!

•
$$E = \{x \approx_0 f(x)\}, t = a \text{ (constant)}.$$

 $B_0(t) \text{ is infinite.}$

 \rightsquigarrow take $\mathcal{R}_0(a) = \{a\}$ instead!

00000	0000	●ററ്ററ്	O	00
Compact representation	n of the hal			

Compact representation of the ball

Definition

Define $\mathcal{R}_{\varepsilon}(x) := \{x\}$ if x is a variable, and otherwise, set

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \cong_{\delta} r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma),$$

where

- $I \simeq_{\delta} r$ is a fresh, unoriented variant of an equation in E_+
- $mcu_{E_0}(I, t)$ is a minimal complete set of E_0 -unifiers of I and t

OCOCO		OUTIOOK O	00
~			

Compact representation of the ball

Definition

Define $\mathcal{R}_{\varepsilon}(x) := \{x\}$ if x is a variable, and otherwise, set

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \cong_{\delta} r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma),$$

where

- $I \cong_{\delta} r$ is a fresh, unoriented variant of an equation in E_+
- $mcu_{E_0}(I, t)$ is a minimal complete set of E_0 -unifiers of I and t

Remarks

- $\mathcal{R}_{\varepsilon}(t)$ is finite and defined uniquely up to renaming variables.
- $\mathcal{R}_0(t) = \{t\}$

• If
$$arepsilon\leqslant\delta$$
, then $\mathcal{R}_arepsilon(t)\subseteq\mathcal{R}_\delta(t)$

Recap/	/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls ○●○○○	Outlook O	Reference 00
	Definition				
	$\mathcal{R}_arepsilon(t) = \{t\} \cup igcup igcup \}$	$\mathcal{R}_{\varepsilon-\zeta}(f(s_1,\ldots,$	$(s_n)) \cup \bigcup$	$\mathcal{R}_{arepsilon-\delta}(t)$	rσ)
	$\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t - t)$		$I \cong_{\delta} r \in E.$ $\delta \leqslant \varepsilon,$	+,	
	$ \begin{aligned} u &= I(u_1, \dots, u_n), \\ s &\in \mathcal{R}_{\mathcal{C}}(t_i) \end{aligned} $,	$\sigma \in \operatorname{Incu}_{E_0}($	(1,1)	

•
$$E = \{f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x)\}.$$

Solve $h(x) \lesssim_2 g(b).$

ecap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls O●000	Outlook O	Referenc 00
Definition				
$\mathcal{R}_arepsilon(t)=\{t\}\cup igcup igtup igcup igc$	$\mathcal{R}_{\varepsilon-\zeta}(f(s_1,\ldots,$	$(s_n)) \cup \bigcup$	$\mathcal{R}_{arepsilon-\delta}(t)$	rσ)
$\begin{matrix} \zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t) \end{matrix}$)	$I \cong_{\delta} r \in E$ $\delta \leqslant \varepsilon,$	(/ +)	
	1),	$o \in mcu_{E_0}$	(1,1)	

•
$$E = \{f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x)\}.$$

Solve $h(x) \leq_2 g(b).$

 $\mathcal{R}_2(g(b)) = \{g(b), f(b, y), h(b)\}$

Recap/Summary: Quantitative Equation	nal Reasoning	Matching Problems	Computing Balls O●OOO	Outlook O	Referenc 00
Definition					
$\mathcal{R}_arepsilon(t)=\{t\}\cup$	U ;	$\mathcal{R}_{\varepsilon-\zeta}(f(s_1,\ldots,s_n))$) U U	$\mathcal{R}_{arepsilon - \delta}(r\sigma$)
	$\zeta \in \mathbb{N}, \\ 0 < \zeta \leq \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)$		$l \cong_{\delta} r \in E_{+}, \\ \delta \leqslant \varepsilon, \\ \sigma \in \mathrm{mcu}_{E_{0}}(I, t)$:)	

•
$$E = \{f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x)\}.$$

Solve $h(x) \leq_2 g(b).$

$$\mathcal{R}_2(g(b)) = \{g(b), f(b, y), h(b)\}$$

$$\rightsquigarrow \sigma = \{x \mapsto b\}$$
 is a solution.

Recap/	/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls ○●○○○	Outlook O	Reference 00
	Definition				
	$\mathcal{R}_arepsilon(t) = \{t\} \cup igcup igcup \}$	$\mathcal{R}_{\varepsilon-\zeta}(f(s_1,\ldots,$	$(s_n)) \cup \bigcup$	$\mathcal{R}_{arepsilon-\delta}(t)$	rσ)
	$\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t - t)$		$I \cong_{\delta} r \in E.$ $\delta \leqslant \varepsilon,$	+,	
	$ \begin{aligned} u &= I(u_1, \dots, u_n), \\ s &\in \mathcal{R}_{\mathcal{C}}(t_i) \end{aligned} $,	$\sigma \in \operatorname{Incu}_{E_0}($	(1,1)	

 $E = \{f(x,y) \approx_0 f(y,x), f(x,y) \approx_1 g(x,y)\}.$ Solve $f(g(b,z),z) \lesssim_1 f(f(a,b),a).$

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls 0●000	Outlook O	Referenc 00
Definition				
$\mathcal{R}_{arepsilon}(t) = \{t\} \cup igcup igcup \}$	$\mathcal{R}_{arepsilon-\zeta}(f(s_1,\ldots,$	$(s_n)) \cup \bigcup$	$\mathcal{R}_{arepsilon-\delta}(eta)$	rσ)
$\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon \\ t = f(t_1,, s_i \in \mathcal{R}_{\mathcal{L}}(t)$	$, t_n), $	$I \cong_{\delta} r \in E$ $\delta \leqslant \varepsilon,$ $\sigma \in \mathrm{mcu}_{E_0}$	(<i>I</i> , <i>t</i>)	

$$E = \{f(x,y) \approx_0 f(y,x), f(x,y) \approx_1 g(x,y)\}.$$

Solve $f(g(b,z),z) \lesssim_1 f(f(a,b),a).$

 $\mathcal{R}_1(f(f(a, b), a)) = \{f(f(a, b), a), f(g(a, b), a), f(g(b, a), a), g(a, f(a, b)), g(f(a, b), a)\}$

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls 0●000	Outlook O	Referenc 00
Definition				
$\mathcal{R}_{arepsilon}(t) = \{t\} \cup igcup igcup \}$	$\mathcal{R}_{arepsilon-\zeta}(f(s_1,\ldots,$	$(s_n)) \cup \bigcup$	$\mathcal{R}_{arepsilon-\delta}(eta)$	rσ)
$\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon \\ t = f(t_1,, s_i \in \mathcal{R}_{\mathcal{L}}(t)$	$, t_n), $	$I \cong_{\delta} r \in E$ $\delta \leqslant \varepsilon,$ $\sigma \in \mathrm{mcu}_{E_0}$	(<i>I</i> , <i>t</i>)	

•
$$E = \{f(x,y) \approx_0 f(y,x), f(x,y) \approx_1 g(x,y)\}.$$

Solve $f(g(b,z),z) \lesssim_1 f(f(a,b),a).$

 $\mathcal{R}_1(f(f(a, b), a)) = \{f(f(a, b), a), f(g(a, b), a), f(g(b, a), a), g(a, f(a, b)), g(f(a, b), a)\}$

 $\rightsquigarrow \sigma = \{z \mapsto a\}$ is a solution.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls 00●00	Outlook O	References ດດ
First results				

Proposition

If $E = E_+$ is regular and t is a ground term, then $\mathcal{R}_{\varepsilon}(t) = B_{\varepsilon}(t)$.

In particular: $E \vdash s\sigma \approx_{\varepsilon} t \iff s\sigma \in B_{\varepsilon}(t) \iff s\sigma \in \mathcal{R}_{\varepsilon}(t)$.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls	Outlook	References
	ດດດດ	00000	O	ດດ
First results				

Proposition

If
$$E=E_+$$
 is regular and t is a ground term, then $\mathcal{R}_arepsilon(t)=B_arepsilon(t)$

$$\mathsf{In particular:} \ E \vdash s\sigma \approx_{\varepsilon} t \iff s\sigma \in B_{\varepsilon}(t) \iff s\sigma \in \mathcal{R}_{\varepsilon}(t).$$

Quantitative matching algorithm 1:

Input: Regular $E = E_+$; *E*-matching problem $s \lesssim_{\varepsilon} t$ with *t* ground. **Output:** A complete set of solutions.

$$S \leftarrow \emptyset$$

2 Compute
$$\mathcal{R}_{\varepsilon}(t)$$

Solution For each
$$u \in \mathcal{R}_{\varepsilon}(t)$$
:

$$S \leftarrow S \cup \{ \text{syntactic matchers of } s \text{ to } u \}$$

Seturn S

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls	Outlook	References
	ດດດດ	00000	O	ດດ
First results				

Proposition

If
$$E=E_+$$
 is regular and t is a ground term, then $\mathcal{R}_arepsilon(t)=B_arepsilon(t)$

$$\mathsf{In particular:} \ E \vdash s\sigma \approx_{\varepsilon} t \iff s\sigma \in B_{\varepsilon}(t) \iff s\sigma \in \mathcal{R}_{\varepsilon}(t).$$

Quantitative matching algorithm 1:

Input: Regular $E = E_+$; *E*-matching problem $s \leq_{\varepsilon} t$ with *t* ground. **Output:** A complete set of solutions.

$$S \leftarrow \emptyset$$

2 Compute
$$\mathcal{R}_{\varepsilon}(t)$$

• For each
$$u \in \mathcal{R}_{\varepsilon}(t)$$
:

$$S \leftarrow S \cup \{ \text{syntactic matchers of } s \text{ to } u \}$$

Seturn S

Corollary

The above algorithm is sound and complete.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls	Outlook	References
	ດດດດ	000€0	O	00
Relaxing the assumption	ıs: non-regu	lar <i>E</i> +		

Consider the case where $E = E_+$ need not be regular.

Example

$$E = \{f(x) \approx_1 g(x, y)\}; \text{ solve } g(x, b) \lesssim_1^? f(a).$$

$$\mathcal{R}_1(f(a)) = \{f(a), g(a, y)\}.$$

	0000	00000	0	00
Dolouing the convert				

Relaxing the assumptions: non-regular E_+

Consider the case where $E = E_+$ need not be regular.

Example

$$\begin{split} & E = \{f(x) \approx_1 g(x, y)\}; \text{ solve } g(x, b) \lesssim_1^? f(a). \\ & \mathcal{R}_1(f(a)) = \{f(a), g(a, y)\}. \\ & \text{Syntactic matching does not succeed.} \\ & \text{The solution } \sigma = \{x \mapsto a\} \text{ can be found via syntactic unification of } \\ & g(x, b) \text{ and } g(a, y). \end{split}$$

Recap/Summary: Quantitative Equational Reasoning Matching Problems Computing Balls Outlook References

Relaxing the assumptions: non-regular E_+

Consider the case where $E = E_+$ need not be regular.

Example

$$\begin{split} & E = \{f(x) \approx_1 g(x,y)\}; \text{ solve } g(x,b) \lesssim_1^? f(a). \\ & \mathcal{R}_1(f(a)) = \{f(a), g(a,y)\}. \\ & \text{Syntactic matching does not succeed.} \\ & \text{The solution } \sigma = \{x \mapsto a\} \text{ can be found via syntactic unification of } \\ & g(x,b) \text{ and } g(a,y). \end{split}$$

Desired Proposition

Assume that $E = E_+$ and s, t are terms, t ground. Then $E \vdash s \approx_{\varepsilon} t \iff s = u\tau$ for some $u \in \mathcal{R}_{\varepsilon}(t)$ and some substitution τ .

Assuming the proposition, we could replace syntactic matchers by syntactic unifiers in the algorithm!

Now, consider non-empty E_0 .

Recall: $\mathcal{R}_{\varepsilon}(t)$ represents terms up to equality modulo E_0 .

By assumption, we know how to solve unification in E_0 . Can we just replace syntactic unification by unification modulo E_0 to solve the matching problem in E?

Example 1

$$E = \{f(a, x) \approx_1 g(x, a), a \approx_0 b\}.$$

Solve $f(b, y) \leq_1 g(c, b).$
$$\mathcal{R}_1(g(c, b)) = \{g(c, b), f(a, c)\}.$$

$$\sigma = \{y \mapsto c\} \text{ is an } E_0\text{-unifier of } f(b, y) \text{ and } f(a, c).$$

Now, consider non-empty E_0 .

Recall: $\mathcal{R}_{\varepsilon}(t)$ represents terms up to equality modulo E_0 .

By assumption, we know how to solve unification in E_0 . Can we just replace syntactic unification by unification modulo E_0 to solve the matching problem in E?

Example 2

$$E = \{f(a, x) \approx_0 g(x), a \approx_1 b\}; \text{ solve } f(b, y) \lesssim_1 g(a).$$

Then $\mathcal{R}_1(g(a)) = \{g(a), g(b)\}.$

There is no *E*₀-unifier!

To find the solution, one would also need to compute $\tilde{\mathcal{R}}_1(f(b,y)) = \{f(b,y), f(a,y)\}$

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls	Outlook	References 00
Outlook				

Possible future work:

- Results for matching in the more general cases: non-regular E_+ , non-empty E_0
- Different (e.g., rule-based) approaches for quantitative matching
- Matching in conditional theories
- Other equational problems in the quantitative setting (unification, anti-unification)
- Different versions of quantitative equational reasoning, e.g. Gavazzo-Di Florio (2023)

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls	Outlook O	References 00
References				

- Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon Plotkin. "Quantitative Equational Reasoning". In: *Foundations of Probabilistic Programming*. Ed. by Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. Cambridge University Press, 2020, pp. 333–360.
- [2] Garrett Birkhoff and P. Hall. "On the Structure of Abstract Algebras". In: Mathematical Proceedings of the Cambridge Philosophical Society 31 (1935), pp. 433–454.
- [3] Francesco Gavazzo and Cecilia Di Florio. "Elements of Quantitative Rewriting". In: *Proc. ACM Program. Lang.* 7.POPL (Jan. 2023).
- [4] Radu Mardare, Prakash Panangaden, and Gordon Plotkin. "Quantitative Algebraic Reasoning". In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '16. New York, NY, USA: Association for Computing Machinery, 2016, pp. 700–709.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems ດດດດ	Computing Balls	Outlook O	References ●O

Inference rules for equational logic

(Refl)
$$\emptyset \vdash s \approx s \in \mathcal{U}$$

(Symm) $\{s \approx t\} \vdash t \approx s \in \mathcal{U}$
(Trans) $\{s \approx t, t \approx u\} \vdash s \approx u \in \mathcal{U}$
(Cong) $\{s_1 \approx t_1, \dots, s_n \approx t_n\} \vdash f(s_1, \dots, s_n) \approx f(t_1, \dots, t_n) \in \mathcal{U}$ for any $f : n \in \Omega$.
(Subst) If $\Gamma \vdash \Delta \in \mathcal{U}$, then $\Gamma \sigma \vdash \Delta \sigma \in \mathcal{U}$ for any substitution σ
(Assum) If $s \approx t \in E$, then $E \vdash s \approx t \in \mathcal{U}$
(Cut) If $\Gamma \vdash \Delta \in \mathcal{U}$ and $\Delta \vdash \Theta \in \mathcal{U}$, then $\Gamma \vdash \Theta \in \mathcal{U}$.

Recap/Summary: Quantitative Equational Reasoning	Matching Problems	Computing Balls	Outlook O	References ∩●

Inference rules for quantitative equational logic

$$\begin{array}{l} (\operatorname{Refl}) \ \emptyset \vdash s \approx_{\varepsilon} s \in \mathcal{U} \\ (\operatorname{Symm}) \ \{s \approx_{\varepsilon} t\} \vdash t \approx_{\varepsilon} s \in \mathcal{U} \\ (\operatorname{Triang}) \ \{s \approx_{\varepsilon} t, t \approx_{\delta} u\} \vdash s \approx_{\varepsilon + \delta} u \in \mathcal{U} \\ (\operatorname{Max}) \ \{s \approx_{\varepsilon} t, t \approx_{\delta} u\} \vdash s \approx_{\delta} t \in \mathcal{U} \text{ for every } \delta \geq \varepsilon \\ (\operatorname{Max}) \ \{s \approx_{\varepsilon} t\} \vdash s \approx_{\delta} t \in \mathcal{U} \text{ for every } \delta \geq \varepsilon \\ (\operatorname{NExp}) \ \{s_{1} \approx_{\varepsilon} t_{1}, \ldots, s_{n} \approx_{\varepsilon} t_{n}\} \vdash f(s_{1}, \ldots, s_{n}) \approx_{\varepsilon} f(t_{1}, \ldots, t_{n}) \in \mathcal{U} \text{ for any} \\ f : n \in \Omega. \\ (\operatorname{Cont}) \ \{s \approx_{\varepsilon'} t \mid \varepsilon' > \varepsilon\} \vdash s \approx_{\varepsilon} t. \\ (\operatorname{Subst}) \ \operatorname{If} \ \Gamma \vdash \Delta \in \mathcal{U}, \text{ then } \Gamma \sigma \vdash \Delta \sigma \in \mathcal{U} \text{ for any substitution } \sigma \\ (\operatorname{Assum}) \ \operatorname{If} \ s \approx_{\varepsilon} t \in E, \text{ then } E \vdash s \approx_{\varepsilon} t \in \mathcal{U} \\ (\operatorname{Cut}) \ \operatorname{If} \ \Gamma \vdash \Delta \in \mathcal{U} \text{ and } \Delta \vdash \Theta \in \mathcal{U}, \text{ then } \Gamma \vdash \Theta \in \mathcal{U}. \end{array}$$