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Symbolic constraints

Usually: conjunctions of primitive (atomic) constraints in some
logic language.

Examples of primitive constraints:

� equations,

� disequations,

� atomic formulas expressing e.g., ordering, membership,
generalization, or dominance relations,

� etc.

Solutions: variable substitutions that satisfy the given formula.
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Symbolic constraints

Our focus: equational and generalization constraints.

Solving methods: unification, matching, anti-unification.

Appear in many areas of computational logic:

� automated reasoning

� term rewriting

� declarative programming

� pattern-based calculi

� unification theory

� . . .
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Dual problems: unification / anti-unification

s: most general instance
ϑ solves the unification problem t1 =? t2

s

t1 t2

ϑ ϑ

=t1ϑ = t2ϑ

t: least general generalization
X = t solves the anti-unification problem X : t1 , t2

t

σ1 σ2

tσ1 = = tσ2
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Dual problems: unification / anti-unification

most general instance

f(a, g(a), g(y))

f(x, g(x), g(y)) f(a, g(a), z)

{x 7→ a, z 7→ g(y)} {x 7→ a, z 7→ g(y)}

least general generalization

f(u, g(u), v)

{u 7→ x, v 7→ g(y)} {u 7→ a, v 7→ z}
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Precise vs imprecise

In these examples, the given information was precise.

Two symbols, terms, etc. are either equal or not.

How to deal with cases when the information is not perfect?
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Outline

Quantitative extensions of equalities

Fuzzy proximities

Quantitative equational logic

Future research directions
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From equalities to tolerances

Reasoning with incomplete, imperfect information is very
common in human communication.

Its modeling is a highly nontrivial task.

For many problems in this area, exact equality is replaced by its
approximation.

Tolerance relations are a tool to express the approximation,
modeling the corresponding imprecise information.

They are reflexive and symmetric but not necessarily transitive
relations, expressing the idea of closeness or resemblance.
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From equalities to tolerances

Examples of tolerance relations include some well-known
mathematical notions, e.g.,

� a and b are vertices of the same edge in an undirected
graph,

� a and b are points in a metric space that are within a given
positive distance from each other,

� Two binary sequences a and b differ from each other in at
most e positions for some given error level e.

� For a topological space T and its fixed covering ω, the
relation “a and b are points in T that belong to the same
element of ω”.
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From equalities to tolerances

Examples of approximating the equality by quantitative
tolerance relations:

� Using fuzzy proximity relations, expressing the degree of
closeness / resemblance:

t 'λ s, λ ∈ [0, 1] :

t and s are proximal with degree λ

� Using quantitative equations, expressing the distance
between the objects:

t 'λ s, λ ∈ Q≥0 :

t and s are at most λ apart
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Quantitative relations over terms

Our objects are first-order terms.

We need to define quantitative counterparts of equality for
terms, and then design methods to solve symbolic constraints
over them.
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Outline

Quantitative extensions of equalities

Fuzzy proximities

Quantitative equational logic

Future research directions
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Fuzzy proximities

A fuzzy relation on a set S: a mapping from S to [0, 1].

A fuzzy relation R on S is a proximity (fuzzy tolerance) relation
on S iff it is reflexive and symmetric:

Reflexivity: R(s, s) = 1 for all s ∈ S.

Symmetry: R(s1, s2) = R(s2, s1) for all s1, s2 ∈ S.

R(s1, s2): the degree of proximity between s1 and s2.
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Fuzzy proximities

A proximity relation on S is a similarity (fuzzy equivalence)
relation on S if it is transitive:

R(s1, s2) ≥ R(s1, s) ∧R(s, s2) for any s1, s2, s ∈ S,

where ∧ is a T-norm: an associative, commutative,
non-decreasing (monotonic) binary operation on [0, 1] with 1 as
the unit element.
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Fuzzy proximities

T-norm (triangular norm) generalizes intersection in a lattice
and conjunction in logic.

Some well-known T-norms:

� Minimum T-norm (aka Gödel T-norm): s ∧ t = min(s, t).

� Product T-norm: s ∧ t = s ∗ t.
� Łukasiewicz T-norm: s ∧ t = max{0, s+ t− 1}.

In the rest, we use the min T-norm.
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Fuzzy proximities

Given 0 ≤ λ ≤ 1, the λ-cut of R on S is the crisp relation

Rλ := {(s1, s2) | R(s1, s2) ≥ λ}.

Notation: s1 'R,λ s2 means (s1, s2) ∈ Rλ.

The cut value λ provides a threshold: defines which objects are
treated proximal to each other ((R, λ)-proximal) and which are
not.
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Fuzzy proximities

R: a given proximity relation on a set of function symbols F .

No restriction: symbols of different arity might be proximal with
a positive degree (fully fuzzy signature).

To be able to extend proximity from alphabet symbols to terms,
we need to know which arguments of proximal symbols are
related to each other (argument relations).

We assume that this information is provided.
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Fuzzy proximities

If R(f, g) = α > 0 and the argument relation between f and g is
ρ, we write f ∼ρR,α g.

Assumptions:

� for each pair (f, g), there is at most one argument relation;

� if f ∼ρR,α g, then g ∼ρ
−1

R,α f .

Basic signatures: a special case with ρ required to be a (left
and right) total identity relation.

Argument relations should satisfy certain extra properties in
order a similarity relation on the signature to be extendable to a
similarity relation over terms.
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Fuzzy proximities

Example of a proximity relation on a fully fuzzy signature.

R: p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

p ∼{(1,1),(1,2)}R,0.7 q

We have f ∼Id
R,1 f for all f .
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Fuzzy proximities over terms

Extending R from the signature to terms:

� R(x, x) = 1 for all variables x.

� R(f(t1, . . . , tn), g(s1, . . . , sm)) = α ∧
∧

(i,j)∈ρR(ti, sj),
where f ∼ρR,α g.

� R(t, s) = 0 in all other cases.

Such an extension is a proximity relation on terms.

R(t, t) = 1 R(s, t) = R(t, s)
R(t, s) ≤ R(tσ, sσ) R(C[t], C[s]) = R(t, s)

20 / 41



Fuzzy proximities over terms

Extending R from the signature to terms:

� R(x, x) = 1 for all variables x.

� R(f(t1, . . . , tn), g(s1, . . . , sm)) = α ∧
∧

(i,j)∈ρR(ti, sj),
where f ∼ρR,α g.

� R(t, s) = 0 in all other cases.

Such an extension is a proximity relation on terms.

R(t, t) = 1 R(s, t) = R(t, s)
R(t, s) ≤ R(tσ, sσ) R(C[t], C[s]) = R(t, s)

20 / 41



Proximity-based unification

Given: A proximity relation R, a cut value λ, and term
pairs (ti, si), 1 ≤ i ≤ n.

Find: A substitution σ such that tiσ 'R,λ siσ for all
1 ≤ i ≤ n.

(R, λ)-unification problem: P = {t1 '?
R,λ s1, . . . , tn '?

R,λ sn}.

σ: (R, λ)-unifier of P .

Interesting unifiers are most general ones.
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Proximity-based matching

Given: A proximity relation R, a cut value λ, and term
pairs (ti, si), 1 ≤ i ≤ n.

Find: A substitution σ such that tiσ 'R,λ si for all
1 ≤ i ≤ n.

(R, λ)-matching problem: P = {t1 -?
R,λ s1, . . . , tn -

?
R,λ sn}.

σ: (R, λ)-matcher of P .

Can be treated as a special case of unification.

Better: use a simpler dedicated algorithm.
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Proximity-based generalization

Given: A proximity relation R, a cut value λ, and two
terms t and s.

Find: A term r such that r -R,λ t and r -R,λ s.

t ,R,λ s: the notation for t and s to be generalized.

r: (R, λ)-generalization of s and t.

Interesting generalizations are the least general ones.
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Proximity classes

Rλ: a

b c

d

f g

In the class-based approach, the terms f(x, x) and g(a, d) are
unifiable.

Reason: a and d have common neighbors, b and c.

It is natural to have {x 7→ b} and {x 7→ c} as unifiers of f(x, x) and
g(a, d).

Proximity class of a symbol: its neighborhood in the graph.

class(a,R, λ) = {a, b, c}. class(d,R, λ) = {d, b, c}.
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Proximity-based unification using classes

One of the peculiarities:

Syntactic unification problems

{f(x, y) .=?
f(y, b)} and {f(x, y) .=?

f(b, b)}

have the same set of unifiers.

In proximity-based unification with classes this is not the case.

Take Rλ = {(a, b), (b, c), (c, d)} and the problems

P1 = {f(x, y) '?
R,λ f(y, b)}, P2 = {f(x, y) '?

R,λ f(b, b)}.

Let σ = {x 7→ d, y 7→ c} and ϑ = {x 7→ a, y 7→ c}.
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Unification using classes, fully fuzzy

The algorithm works for argument relations ρ ⊆ N ×M that are
correspondence relations, i.e. they are:

� left-total
for all i ∈ N there exists j ∈M such that (i, j) ∈ ρ;

� right-total
for all j ∈M there exists i ∈ N such that (i, j) ∈ ρ.

This is to make sure that failing with occurrence cycles does not
lead to losing a solution.

Correspondence relations guarantee that proximal terms have
the same set of variables and no term is close to its proper
subterm.

26 / 41



Unification using classes, fully fuzzy

The algorithm works for argument relations ρ ⊆ N ×M that are
correspondence relations, i.e. they are:

� left-total
for all i ∈ N there exists j ∈M such that (i, j) ∈ ρ;

� right-total
for all j ∈M there exists i ∈ N such that (i, j) ∈ ρ.

This is to make sure that failing with occurrence cycles does not
lead to losing a solution.

Correspondence relations guarantee that proximal terms have
the same set of variables and no term is close to its proper
subterm.

26 / 41



Unification using classes, fully fuzzy

The argument relation in this example is not correspondence:

p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

Here it is:

p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4
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Unification using classes, fully fuzzy

p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

Unification problem: P = {p(x) '?
R,0.3 q(g(u, a), h(z, u))}.

For P , the algorithm produces four final configurations:

{v1 '?
R,0.3 u, v3 '?

R,0.3 u}; {v1 '?
R,0.3 u, v3 '?

R,0.3 u};
{x 7→ f(v1, a, v3), z 7→ a}; 0.5 {x 7→ f(v1, b, v3), z 7→ a}; 0.4

{v1 '?
R,0.3 u, v3 '?

R,0.3 u}; {v1 '?
R,0.3 u, v3 '?

R,0.3 u};
{x 7→ f(v1, a, v3), z 7→ b}; 0.4 {x 7→ f(v1, b, v3), z 7→ b}; 0.5
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Unifiability

The decision problem of class-based approximate unifiability
with in fully fuzzy signatures is NP-hard.

It can be shown by a reduction from positive 1-in-3-SAT
problem.

In fact, the reduction shows that already a special case of
unifiability (well-moded) is NP-hard.
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Unification using classes, fully fuzzy

t1 t2'?
R,λ

If ϕ solves the variable-only constraint S with degree β then
ϑϕ solves the unification problem t1 '?

R,λ t2 with degree α ∧ β

s1 s2'R,α∧β

ϑ, S,α ϑ, S,α

=t1ϑϕ = t2ϑϕ
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Matching using classes, fully fuzzy

Unlike unification, we do not have to restrict argument relations for
matching.

It may cause matchers to contain fresh variables.

p(•)

q(•, •)
0.7

g(•)

f(•, •, •)

h(•)

0.6

0.5

b

c

0.4

Consider the matching problem p(x) -?
R,0.4 q(g(a), h(c)).

The matching algorithm returns two solutions:

{x 7→ f(a, v, c)}; 0.5 {x 7→ f(a, v, b)}; 0.4

where v is a fresh variable.
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Generalization using classes, fully fuzzy

We compute t, α1, α2, and a representation from which σ1 and σ2 can
be read.

t1 t2,R,λ

t: a least general generalization
X = t solves the anti-unification problem X : t1 ,R,λ t2

with degrees α1 and α2

t

σ1,α1 σ2,α2

tσ1 'R,α1 'R,α2 tσ2
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Generalization using classes, fully fuzzy

R: p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

Given R and λ = 0.3, anti-unify g(a, b) and h(c, b).

One of the solutions: f(a, x, a), where x : b , c, with the
approximation degrees 0.6 for g(a, b) and 0.4 for h(c, b).
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Generalization using classes, fully fuzzy

� f ∼{(1,1),(2,1)}
R,0.8 h.

� h ∼{(1,1),(2,1)}
R,0.7 g.

� a ∼∅
R,0.6 b, b ∼∅

R,0.5 c

f(•, •)

h(•, •, •)

g(•)
0.7

0.8

(R, 0.5)-lggs of f(a, c) and g(b):
h(b, a,_) and h(b, b,_).

� lgg’s can be comparable wrt -R,λ

(but not wrt �),

� the irrelevant generalization
argument is expressed by the
anonymous variable _.

f(a, c)

h(b, a,_)

g(b)

0.5

0.6

f(a, c)

h(b, b,_)

g(b)

0.5

0.7
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Generalization using classes, fully fuzzy

� f ∼{(1,1),(2,1)}
R,0.8 h.

� h ∼{(1,1),(2,1)}
R,0.7 g.

� a ∼∅
R,0.6 b, b ∼∅

R,0.5 c

f(•, •)

h(•, •, •)

g(•)
0.7

0.8

(R, 0.6)-lgg of f(a, c) and g(b): x.

� It can not be h(y, b, _), because y
can not be instantiated by a term
that is (R, 0.6)-close to both a and c.

� The set {a, c} is (R, 0.6)-inconsistent

f(a, c)

x

g(b)

1

1
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Family of algorithms

Some features of class-based fully fuzzy anti-unification:

� nonstandard variable merging (also in basic signatures)

Not needed for linear generalizations

� irrelevant position abstraction

Not needed if argument relations are left- and right-total

� look-ahead consistency check of arguments

Not needed if argument relations are (partial) injective functions

Combinations lead to eight different algorithms, obtained from the
general set of rules in a modular way.

They differ from each other by the decomposition rule.

Each of them computes the respective minimal complete sets of
generalizations, together with their approximation degree upper
bounds.
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Things are easier in basic signatures

A set-based compact representation is a convenient notation for
formulating a matching algorithm for basic signatures.

R:

g1h1

g2

h2 a1 b

a2

0.7 0.70.6

0.50.6 0.8 0.5 0.8

{f(x, x) �?
R,0.6 f(g1(a1), g2(a2))}; ∅ =⇒

{x �?
R,0.6 g1(a1), x �?

R,0.6 g2(a2)}; ∅ =⇒

{x �?
R,0.6 g2(a2)};

{x ≈ {(g1, 1), (h1, 0.6), (h2, 0.7)}({(a1, 1), (b, 0.7)})} =⇒

∅; {x ≈ {{(g1, 1), (h1, 0.6), (h2, 0.7)}({(a1, 1), (b, 0.7)}),

x ≈ {(g2, 1), (h1, 0.6), (h2, 0.8)}({(a2, 1), (b, 0.8)})} =⇒

∅; {x ≈ {(h1, 0.6), (h2, 0.7)}({(b, 0.7)})}.

Representing two solutions: h1(b); 0.6 and h2(b); 0.7.
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Quantitative eq. logic: inference rules

s ≈λ t ∈ E
E ` s ≈λ t

(Ax.)
E ` s ≈0 s

(Refl.)
E ` s ≈λ t
E ` t ≈λ s

(Sym.)

E ` s ≈λ t E ` t ≈δ r
E ` s ≈λ+δ r

(Triang.)
E ` s ≈λ t
E ` sσ ≈λ tσ

(Inst.)

E ` s1 ≈λ t1 · · · E ` sn ≈λ tn
E ` f(s1, . . . , sn) ≈λ f(t1, . . . , tn)

(NonExp.)

E ` φ for all φ ∈ E′ E′ ` ψ
E ` ψ

(Cut.)

δ > 0 E ` s ≈λ t
E ` s ≈λ+δ t

(Max.)
{E ` s ≈δ t | δ > λ}

E ` s ≈λ t
(Arch.)
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Directions for future research

� Generic treatment of T-norms.

� In the proximity setting, computing a best solution (by some
criterion), instead of all solutions or some arbitrarily chosen ones
(−→ optimization?).

� Proximity-based unification, matching, and anti-unification
modulo background theories (similar to crisp equational
unification /matching / anti-unification).

� Unification, matching, and anti-unification for quantitative
theories.

� Relating to a recently introduced framework of quantitative and
metric rewriting (Gavazzo & del Florio, POPL’23): completion.

� Applications.
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