
HPC & PARALLELIZATION
TUSAIL School, Linz, Austria, April 27, 2023

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

http://www.risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

1. HPC Architectures

2. OpenMP

3. MPI

4. Parallel Program Design

1/79

High-Performance Architectures

SIMD Single Instruction, Multiple Data

MPP Massively Parallel Processing

Synchronous Execution

Computer Clusters

Asynchronous Execution

MIMD Multiple Instruction, Multiple Data

Shared Memory

Array Processors

Vector Processors

Multiprocessors

Concurrency

SMP Symmetrical Multiprocessing

High−Performance

Multi−Core Processors

Pipelining

Distributed Memory

Architectures that apply concurrency to speedup computations.

2/79

Multi-Core Processors

Multi-core processor, Thread, en.wikipedia.org

• Processors hold multiple processing units (“cores”).
◦ Each core has a separate Level 1 cache.
◦ Cores share a common Level 2 cache.

• Cores may execute multiple threads independently.
◦ Threads: light-weight processes that can be independently

scheduled for execution.
◦ Processes: containers that hold multiple threads that have

access to the same memory.

Already a processor is a HPC system with concurrent units.
3/79

Shared Memory Multi-Processors

Cache Cache Cache Cache Cache

Processor Processor Processor Processor Processor

Bus

Global Memory

Alternative Term: SMP (Symmetric Multiprocessing)

• Multiple asynchronously operating processors.
• Single OS image schedules processes to processors.
• Single shared memory accessible via central bus.

◦ Only one processor at a time can read/write memory.
◦ Processors connected to bus via coherent caches.
◦ Snooping protocol: whenever a cache sees another

processor’s write, it updates its local cache copies.

Scalable to 16 processsors or so. 4/79

Distributed Memory Multi-Processors

Communication Network

Processor

Memory

Interface

Comm.

Alternative Term: MPP (Massively Parallel Processing)

• Many identical nodes that operate asynchronously.
◦ Processor, local memory, communication interface.

• Each node runs its own OS image.
◦ New processes are scheduled to the local processor.

• Nodes connected by high-bandwidth/low-latency network.
◦ Different topologies (grid, tree, hypercube, . . .).
◦ Different network technologies (InfiniBand, OmniPath, . . .)
◦ Remote processes can communicate by message passing.

Scalable to thousands of processors.
5/79

Virtual Shared Memory Multi-Processors

• ccNUMA: “cache coherent
non-uniform memory access”.

◦ All local memories combined to
single address space.

◦ NUMA: access to remote
memory is more expensive.

◦ Directory keeps track of which
nodes hold cache copies of
which lines of local memory.

◦ If local memory line is updated,
nodes with copies are informed.

Cache memory, en.wikipedia.org

Implementation of SMP model on top of MPP hardware.

6/79

The JKU Supercomputer “Mach”

SGI UV-1000 an der Johannes Kepler
Universität

 Rechnerarchitektur SGI UV-1000 shared Memory/cc-numa Architektur
 Prozessortyp Intel E78837 (Westmere - EX)

X86-64, 2.66GHz / 8-Cores / 24MB Cache
 Prozessoranzahl 256 (2048 Cores)
 Speicher 16 TB shared Memory
 Betriebssystem Linux – Suse SLES 11 mit SGI Performance Suite
 Prozessorleistung gesamt Peak = 21,3 TFlops

Spec_2006_INT Rate = ~39.000
Spec_2006_FP Rate = ~29.000
Stream = 5,8 Tbyte/s
Linpack 100 = ~2,2 Gflop/s
Linpack NxN = 18,5 Tflop/s

 Memory-Bandbreite 7,5 TB / s
 Bisection-Bandbreite 480 GB / s

See https://www.risc.jku.at/projects/mach2 for Mach-2. 7/79

https://www.risc.jku.at/projects/mach2

The Data Access Hierarchy

Data Hierarchy Layer Latency Normalized Access Time
L1 Cache 1.4 ns 1×
L3 Cache 23 ns 16×
Local Memory 75 ns 53×
Remote Memory 1 µs 700×
Disk 2 ms 3.6·106×

Processors Cores Router Hops
2 16 0
32 256 1
256 2048 3

Considering the placement of processes and data is important
for achieving high performance on a NUMA system.

8/79

1. HPC Architectures

2. OpenMP

3. MPI

4. Parallel Program Design

9/79

OpenMP (OMP)

• An API for portable shared memory parallel programming.
◦ Compiler directives (pragmas), library routines,

environment variables.

• Targets are C, C++, Fortran.
◦ Often used in combination with MPI (Message Passing

Interface) for hybrid MPP/SMP programs.

• Widely supported.
◦ Commercial compilers: Intel, IBM, Oracle, . . .
◦ Free compilers: GCC, Clang.

• Maintained by the OpenMP ARB.
◦ Architecture Review Board.
◦ Current Version: OpenMP 5.2 (November 2021).

See http://openmp.org for the official specification.

10/79

http://openmp.org

Programming Model

en.wikipedia.org, OpenMP

• Master thread executes program in sequential mode.
• Reaches code section marked with OMP directive:

◦ Execution of section is distributed among multiple threads.
◦ Main thread waits for completion of all threads.
◦ Execution is continued by main thread only.

A fork-join model of parallel execution.

11/79

Shared versus Private Variables

The default context of a variable is determined by some rules.

• Static variables and heap-allocated data are shared.
• Automatically allocated variables are

◦ Shared, when declared outside a parallel region.
◦ Private, when declared inside a parallel region.

• Loop iteration variables are private within their loops.
◦ After the loop, the variable has the same value as if the loop

would have been executed sequentially.

• . . .

OpenMP clauses may specify the context of variables directly.

12/79

Controlling the Number of Threads

• Default set by environment variables:
export OMP_DYNAMIC=FALSE

export OMP_NUM_THREADS=4

• May be overridden for all subsequent code sections:
omp_set_dynamic(0);

omp_set_num_threads(4);

• May be overridden for specific sections:
#pragma omp parallel ... num_threads(4)

If dynamic adjustement is switched on, the actual number of
threads executing a section may be smaller than specified.

13/79

Controlling the Affinity of Threads to Cores

• Pin threads to cores:
export OMP_PROC_BIND=TRUE

• Specify the cores (GCC, Intel Compilers):
export GOMP_CPU_AFFINITY="256-271" // 16 physical cores in upper half

• More flexible alternative for Intel compilers:
export KMP_AFFINITY=

"verbose,granularity=core,explicit,proclist=[256-271]"

14/79

Compiling and Executing OpenMP

• Source
#include <omp.h>

• Intel Compiler:
module load intelcompiler/composer_xe_2013.4.183

icc -Wall -O3 -openmp -openmp-report2 matmult.c -o matmult

• GCC:
module load GnuCC/7.2.0

gcc -Wall -O3 -fopenmp matmult.c -o matmult

• Execution:
export OMP_DYNAMIC=FALSE

export OMP_NUM_THREADS=16

export GOMP_CPU_AFFINITY="256-271"

./matmult

15/79

Parallel Loops

#pragma omp parallel for private(j,k)

for (i=0; i<N; i++) {

for (j=0; j<N; j++) {

for (k=0; k<N; k++) {

a[i,j] += b[i,k]*c[k,j];

}

}

}

• Iterations of i-loop are executed by parallel threads.

• Matrix a is shared by all threads.

• Every thread maintains private instances of i, j, k.

Most important source of scalable parallelism.

16/79

Load Balancing

#pragma omp parallel for ... schedule(kind [, chunk size])

• Various kinds of loop scheduling:
static Loop is divided into equally sized chunks which are

interleaved among threads; default chunk size is N/T .
Number of loop iterations N and number of threads T .

dynamic Threads retrieve chunks from a shared work queue; default
chunk size is 1.

guided Like “dynamic” but chunk size starts large and is
continuously decremented to specified minimum (default 1).

auto One of the above policies is automatically selected (same
as if no schedule is given).

runtime Schedule taken from environment variable OMP_SCHEDULE.
export OMP_SCHEDULE="static,1"

17/79

Example: Matrix Multiplication
#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

#define N 2000

double A[N][N], B[N][N], C[N][N];

int main(int argc, char *argv[]) {

int i, j, k;

double s;

for (i=0; i<N; i++)

{

for (j=0; j<N; j++)

{

A[i][j] = rand();

B[i][j] = rand();

}

}

printf("%f %f\n", A[0][0], B[0][0]);

double t1 = omp_get_wtime();

#pragma omp parallel for private(j,k,s) schedule(runtime)

for (i=0; i<N; i++)

{

for (j=0; j<N; j++)

{

s = 0;

for (k=0; k<N; k++)

{

s += A[i][k]*B[k][j];

}

C[i][j] = s;

}

}

double t2 = omp_get_wtime();

printf("%f (%f s)\n", C[0][0], t2-t1);

return 0;

}

18/79

Parallel Sections
int found1, found2, found3;

#pragma omp parallel sections

{

#pragma omp section

found1 = search1();

#pragma omp section

found2 = search2();

#pragma omp section

found3 = search3();

}

if (found1) printf(�found by method 1\n�);

if (found2) printf(�found by method 2\n�);

if (found3) printf(�found by method 3\n�);

• Each code section is executed by a thread in parallel.

Parallel sections and loops may be also nested.

19/79

Parallel Blocks

int n, a[n], t, i;

#pragma omp parallel private(t, i)

{

t = omp_get_num_threads(); // number of threads

i = omp_get_thread_num(); // 0 <= i < t

compute(a, i*(n/t), min(n, (i+1)*(n/t)));

}

• Every thread executes the annotated block.

• Array a and length n are shared by all threads.

• Every thread maintains private instances of t and i.

Parallelism on the lowest level.

20/79

Critical Sections

int n, a[n], t = 0, i;

#pragma omp parallel private(i)

{

#pragma omp critical(mutex_i)

{

i = t; t++;

}

if (i < n) compute(a, i);

}

• No two threads can simultaneously execute a critical
section with the same name.

High-level but restricted synchronization.

21/79

Example: Manual Task Scheduling
#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

#define N 2000

double A[N][N], B[N][N], C[N][N];

int main(int argc, char *argv[])

{

int i, j, k, row;

double s;

for (i=0; i<N; i++)

{

for (j=0; j<N; j++)

{

A[i][j] = rand();

B[i][j] = rand();

}

}

printf("%f %f\n", A[0][0], B[0][0]);

double t1 = omp_get_wtime();

row = 0;

#pragma omp parallel private(i,j,k,s)

{

while (1)

{

#pragma omp critical(getrow)

{

i = row;

row++;

}

if (i>=N) break;

for (j=0; j<N; j++)

{

s = 0;

for (k=0; k<N; k++)

{

s += A[i][k]*B[k][j];

}

C[i][j] = s;

}

}

}

double t2 = omp_get_wtime();

printf("%f (%f s)\n", C[0][0], t2-t1);

return 0;

}

22/79

Example: Recursive Tasks

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

#define N 3000

double A[N][N], B[N][N], C[N][N];

int matmultrec(int begin, int end);

int matmultrow(int i);

int main(int argc, char *argv[])

{

int i, j, r;

double t1, t2;

for (i=0; i<N; i++) {

for (j=0; j<N; j++) {

A[i][j] = rand();

B[i][j] = rand();

}

}

printf("%f %f\n", A[0][0], B[0][0]);

t1 = omp_get_wtime();

#pragma omp parallel

{

#pragma omp single

{

r = matmultrec(0, N);

}

}

t2 = omp_get_wtime();

printf("%d %f (%f s)\n",

r, C[0][0], t2-t1);

return 0;

}

23/79

Example: Recursive Tasks

int matmultrec(int begin, int end)

{

int n = end-begin;

if (n < 0) return 0;

if (n == 1)

return matmultrow(begin);

int mid = (begin+end)/2;

int r1, r2;

#pragma omp task shared(r1)

r1 = matmultrec(begin, mid);

#pragma omp task shared(r2)

r2 = matmultrec(mid, end);

#pragma omp taskwait

return r1+r2;

}

int matmultrow(int i)

{

int j, k;

double s;

for (j = 0; j < N; j++)

{

s = 0;

for (k = 0; k < N; k++)

{

s += A[i][k]*B[k][j];

}

C[i][j] = s;

}

return 1;

}

• Recursively create two tasks and wait for their completion.

Task parallelism possible, but may become cumbersome.

24/79

1. HPC Architectures

2. OpenMP

3. MPI

4. Parallel Program Design

25/79

Message Passing Interface (MPI)

• An API for portable distributed memory programming.
◦ Set of library routines, no compiler support needed.

• Official bindings for C and Fortran.
◦ Inofficial bindings exist for various other languages.

• Various implementations.
◦ MPICH: initial implementation by Argonne National Lab.
◦ MVAPICH: MPICH derivative by Ohio State university.
◦ Open MPI: merger of various previous implementations.
◦ Commercial implementations by HP, Intel, Microsoft.
◦ Hardware support: SGI MPT with MPI offload engine.

• Maintained by the MPI Forum.
◦ Current Version: MPI 4.0 (June 2021).

See http://mpi-forum.org/ for the official specification.

26/79

http://mpi-forum.org/

MPI Execution Model

program program

node 3

program

node 0 node 1

program

mpirun -np 4 program

MPI Communication Operations

node 2

SPMD: Single Program, Multiple Data.

27/79

Compiling and Executing MPI

• Paths (Default):
CPATH=...:/opt/sgi/mpt/mpt-2.04/include

LIBRARY_PATH=...:/opt/sgi/mpt/mpt-2.04/lib

LD_LIBRARY_PATH=...:/opt/sgi/mpt/mpt-2.04/lib

• Source:
#include <mpi.h>

• Intel Compiler:
module load intelcompiler/composer_xe_2015.1.133

icc -std=c99 -Wall -O3 -lmpi matmult.c -o matmult

• GCC:
module load GnuCC/7.2.0

gcc -Wall -O3 -lmpi matmult.c -o matmult

• Execution:
export MPI_DSM_CPULIST=32-47

mpirun -np 16 ./matmult 2048

28/79

A Sample MPI Program
#include <mpi.h>

int main(int argc, char *argv[]) {

char message[20];

int size, rank;

MPI_Init(&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("processor %d among %d processors\n", rank, size);

if (rank == 0) { /* code for process zero */

strncpy(message,"Hello, there", 19);

MPI_Send(message, 20, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}

else if (rank == 1) { /* code for process one */

MPI_Status status;

MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);

printf("received :%s:\n", message);

}

MPI_Finalize();

return 0;

}

29/79

Basic Operations

int MPI_Init(int *argc, char ***argv)

int MPI_Comm_size(MPI_Comm comm, int *size)

IN comm communicator (handle)

OUT size number of processes in the group of comm (integer)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

IN comm communicator (handle)

OUT rank rank of the calling process in group of comm (integer)

int MPI_Finalize(void)

int MPI_Abort(MPI_Comm comm, int errorcode)

IN comm communicator of tasks to abort

IN errorcode error code to return to invoking environment

Starting a computation, determining its scope, terminating it.

30/79

Blocking Send

int MPI_Send(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

Returns when message buffer may be used again; may (but
need not) block, if no matching receive statement was issued.

31/79

Blocking Receive

int MPI_Recv(void* buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status *status)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative integer)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

Blocks until a matching message could be received; if more
than one message matches, the first one sent is received.

32/79

Example: Computing Pi by Throwing Darts
#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

double dboard (int darts);

#define DARTS 50000 /* number of throws */

#define ROUNDS 100 /* number of iterations */

#define MASTER 0 /* task ID of master task */

int main (int argc, char *argv[]) {

double homepi, pi, avepi, pirecv, pisum;

int taskid, numtasks, source, mtype, i, n;

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&taskid);

printf ("MPI task %d has started...\n", taskid);

srandom (taskid);

avepi = 0;

for (i = 0; i < ROUNDS; i++) {

homepi = dboard(DARTS);

if (taskid != MASTER) {

mtype = i;

MPI_Send(&homepi, 1, MPI_DOUBLE,

MASTER, mtype, MPI_COMM_WORLD);

else {

/* Master receives messages from all workers */

/* - Message type set to the iteration count */

/* - Message source set to wildcard DONTCARE: */

mtype = i;

pisum = 0;

for (n = 1; n < numtasks; n++) {

MPI_Recv(&pirecv, 1, MPI_DOUBLE,

MPI_ANY_SOURCE, mtype, MPI_COMM_WORLD,

&status);

/* keep running total of pi */

pisum = pisum + pirecv;

}

/* Average value of pi for this iteration */

pi = (pisum + homepi)/numtasks;

/* Average value of pi over all iterations */

avepi = ((avepi * i) + pi)/(i + 1);

printf(" After %8d throws, pi = %10.8f\n",

(DARTS * (i + 1)),avepi);

}

}

if (taskid == MASTER)

printf ("\nReal value of PI: 3.1415926535897 \n");

MPI_Finalize();

return 0;

}

33/79

Example: Computing Pi by Throwing Darts

#define sqr(x) ((x)*(x))

double dboard(int darts) {

/* number of hits */

int score = 0;

/* throw darts at board */

for (int n = 1; n <= darts; n++) {

/* random coordinates in interval [-1,+1] */

double r = (double)random()/RAND_MAX;

double x_coord = (2.0 * r) - 1.0;

r = (double)random()/RAND_MAX;

double y_coord = (2.0 * r) - 1.0;

/* if dart lands in circle, increment score */

if ((sqr(x_coord) + sqr(y_coord)) <= 1.0)

score++;

}

/* calculate pi = 4*(pi*r^2)/(4*r^2) */

double pi = 4.0 * (double)score/(double)darts;

return(pi);

}

From MPI tutorial at https://computing.llnl.gov/tutorials/mpi.

34/79

Collective Communication

A0 A0

A0

A0

A0

one-to-all broadcast

MPI_BCAST

data
processes

A0 A1 A2 A3 A0

A1

A2

A3

one-to-all scatter

MPI_SCATTER

A0 A1 A2 A3A0

A1

A2

A3

one-to-all gather

MPI_GATHER

More compact and more efficient programs by the use of
collective communication operations.

35/79

Broadcast

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)

IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

Sender (root) and receivers perform the same operation.

36/79

Gather

int MPI_Gather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at root)

IN recvcount number of elements for any single receive

(non-negative integer, significant only at root)

IN recvtype data type of recv buffer elements

(significant only at root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

Receiver (root) and senders perform the same operation; also
the root is one of the senders.

37/79

Gather-to-all

int MPI_Allgather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process

(non-negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

Every process serves both as a sender and a receiver.

38/79

Scatter

int MPI_Scatter(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcount number of elements sent to each process

(non-negative integer, significant only at root)

IN sendtype data type of send buffer elements

(significant only at root) (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative integer)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

Sender (root) and receivers perform the same operation; also
the root is one of the receivers.

39/79

Example: Matrix Multiplication
int main(int argc, char* argv[]) {

MPI_Comm comm = MPI_COMM_WORLD;

int size, rank;

MPI_Init(&argc, &argv);

MPI_Comm_size(comm, &size);

MPI_Comm_rank(comm, &rank);

int n;

if (rank == 0) {

if (argc != 2) MPI_Abort(comm, -1);

n = atoi(argv[1]);

if (n == 0) MPI_Abort(comm, -1);

}

MPI_Bcast(&n, 1, MPI_INT, 0, comm);

// row number n of A is extended to size*n0

int n0 = n%size == 0 ? n/size : 1+n/size;

double *A;

if (rank == 0) {

A = malloc(size*n0*n*sizeof(double));

for (int i=0; i<n; i++)

for (int j=0; j<n; j++)

A[i*n+j] = rand()%10;

}

double* A0 = malloc(n0*n*sizeof(double));

MPI_Scatter(A, n0*n, MPI_DOUBLE,

A0, n0*n, MPI_DOUBLE, 0, comm);

double* B = malloc(n*n*sizeof(double));

if (rank == 0) {

for (int i=0; i<n; i++)

for (int j=0; j<n; j++)

B[i*n+j] = rand()%10;

}

MPI_Bcast(B, n*n, MPI_DOUBLE, 0, comm);

double* C0 = malloc(n0*n*sizeof(double));

for (int i=0; i<n0; i++) {

for (int j=0; j<n; j++) {

C0[i*n+j] = 0;

for (int k=0; k<n; k++)

C0[i*n+j] += A0[i*n+k]*B[k*n+j];

}

}

double* C;

if (rank == 0)

C = malloc(size*n0*n*sizeof(double));

MPI_Gather(C0, n0*n, MPI_DOUBLE,

C, n0*n, MPI_DOUBLE, 0, comm);

if (rank == 0) { print(C, n, n); }

MPI_Finalize();

}

40/79

Reduction Operations

1316

0 2

0 2 0 2 0 2 0 2

- - - - - -

- - - - - -

MPI_REDUCE with MPI_SUM, root = 1 :

MPI_ALLREDUCE with MPI_MIN:

MPI_REDUCE with MPI_MIN, root = 0 :

2 4 5 7 6 20 3

0 1 2 3

Initial

Data :

Processes . . .

More compact and more efficient programs by the use of
reduction operations.

41/79

Reduce

int MPI_Reduce(const void* sendbuf,

void* recvbuf, int count, MPI_Datatype datatype,

MPI_Op op, int root, MPI_Comm comm)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer (choice, significant only at root)

IN count number of elements in send buffer (non-negative integer)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

Receiver (root) and senders perform the same operation; also
the root is one of the senders.

42/79

All-Reduce

int MPI_Allreduce(const void* sendbuf,

void* recvbuf, int count, MPI_Datatype datatype,

MPI_Op op, MPI_Comm comm)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer (choice)

IN count number of elements in send buffer (non-negative integer)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN comm communicator (handle)

Every process serves both as a sender and a receiver.

43/79

Predefined Reduction Operations

MPI_MAX maximum

MPI_MIN minimum

MPI_SUM sum

MPI_PROD product

MPI_LAND logical and

MPI_BAND bit-wise and

MPI_LOR logical or

MPI_BOR bit-wise or

MPI_LXOR logical exclusive or (xor)

MPI_BXOR bit-wise exclusive or (xor)

MPI_MAXLOC max value and location

MPI_MINLOC min value and location

Commutative and associative operations; thus the order of
reduction does not matter.

44/79

User-Defined Reduction Operations

int MPI_Op_create(MPI_User_function* user_fn, int commute, MPI_Op* op)

IN user_fn user defined function (function)

IN commute true if commutative; false otherwise.

OUT op operation (handle)

Turn user-defined function to a reduction operation; must be
associative but not necessarily commutative.

45/79

Example: Computing Pi by Throwing Darts

#include "mpi.h"

#include <stdio.h>

#include <stdlib.h>

double dboard (int darts);

#define DARTS 50000 /* number of throws */

#define ROUNDS 100 /* number of iterations */

#define MASTER 0 /* task ID of master task */

int main (int argc, char *argv[])

{

double homepi, pisum, pi, avepi;

int taskid, numtasks, i;

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&taskid);

printf ("MPI task %d has started...\n", taskid);

/* Set seed for random number generator */

srandom (taskid);

avepi = 0;

for (i = 0; i < ROUNDS; i++) {

/* All tasks calculate pi */

homepi = dboard(DARTS);

/* sum values of homepi across all tasks */

MPI_Reduce(&homepi, &pisum, 1, MPI_DOUBLE,

MPI_SUM, MASTER, MPI_COMM_WORLD);

if (taskid == MASTER) {

pi = pisum/numtasks;

avepi = ((avepi * i) + pi)/(i + 1);

printf(" After %8d throws, pi = %10.8f\n",

(DARTS * (i + 1)),avepi);

}

}

if (taskid == MASTER)

printf ("\nReal PI: 3.1415926535897 \n");

MPI_Finalize();

return 0;

}

46/79

Example: Finite Difference Problem

lwork

work

lsize

size

me rnbrlnbr

MPI_BCAST

MPI_SCATTER

MPI_SEND/RECV

MPI_REDUCEALL

MPI_GATHER

0 1 2

(1)

(2)

(3)

(4)

(5)

Processes

Handle boundaries by “ghost cells”.

47/79

Example: Finite Difference Problem
int main(int argc, char *argv[]) {

...

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_WORLD, &np);

MPI_Comm_rank(MPI_WORLD, &me);

// read work size and work at process 0

int size; float* work;

if (me == 0) {

size = read_work_size();

work = malloc(size*sizeof(float));

read_array(work, size);

}

// distribute work size to every process

MPI_Bcast(&size, 1, MPI_INT, 0, MPI_WORLD);

// allocate space for local work in every process

if (size%np != 0) MPI_Abort(MPI_WORLD, -1);

int lsize = size/np;

float* lwork = malloc((lsize+2)*sizeof(float));

// distribute work to all processes

MPI_Scatter(work, lsize, MPI_FLOAT,

lwork+1, lsize, MPI_FLOAT, 0, MPI_WORLD);

// determine neighbors in ring

int lnbr = (me+np-1)%np;

int rnbr = (me+1)%np;

// iterate until convergence

float globalerr = 99999.0;

while (globalerr > 0.1) {

// exchange boundary values with neighbors

MPI_Send(lwork+1, 1, MPI_FLOAT,

lnbr, 10, MPI_WORLD);

MPI_Recv(lwork+lsize+1, 1, MPI_FLOAT,

rnbr, 10, MPI_WORLD, &status);

MPI_Send(lwork+lsize, 1, MPI_FLOAT,

rnbr, 20, MPI_WORLD);

MPI_Recv(lwork, 1, MPI_FLOAT,

lnbr, 20, MPI_WORLD, &status);

// perform local work

compute(lwork, lsize);

// determine maximum error among all processes

float localerr = error(lwork, lsize);

MPI_Allreduce(&localerr, &globalerr,

1, MPI_FLOAT, MPI_MAX, MPI_WORLD);

}

// collect results at process 0

MPI_Gather(local+1, lsize, MPI_FLOAT,

work, lsize, MPI_Float, 0, MPI_WORLD);

if (me == 0) { write_array(work, size); }

MPI_Finalize();

}

48/79

1. HPC Architectures

2. OpenMP

3. MPI

4. Parallel Program Design

49/79

Designing Parallel Programs

Ian Foster: “Designing and Building Parallel Programs”.

• First consider machine-independent (algorithmic) issues.
◦ Concurrency.
◦ Scalability.

• Later deal with machine-specific (performance) aspects.
◦ Locality.
◦ Placement.

A methodological approach in multiple stages.

50/79

The PCAM Approach

• Partitioning.
◦ Decompose computation and data.
◦ Exhibit opportunities for parallelism

by creating many small tasks.

• Communication.
◦ Analyze data dependencies.
◦ Determine structure of

commmunication and coordination.

• Agglomeration.
◦ Combine tasks to bigger tasks.
◦ Improve performance of execution

on real computers.

• Mapping.
◦ Assign tasks to processors.
◦ Maximize utilization and minimize

communication.

P R O B L E M

partition

communicate

agglomerate

map

51/79

Partitioning

Expose opportunities for parallelism.

• Construct fine-grained decomposition of problem.
◦ Domain/data decomposition:

Partition data, associate computation to data.

◦ Functional/task decomposition:
Partition computation, associate data to computation.

• Complementary approaches.
◦ Should be both considered.
◦ Can lead to alternative algorithms.
◦ Can be applied to different parts of problem.

• Avoid replication of computation or data.
◦ May be introduced later to reduce communication overhead

and to increase the granularity of tasks.

52/79

Domain Decomposition

Focus on the decomposition of the data.

3-D2-D1-D

• Divide data into small pieces and associate computation.
◦ If computation requires several, associate to “main” piece.
◦ Communication is required for access to the other pieces.

• Resulting tasks should be of roughly the same size.
◦ Otherwise load balancing may become difficult.

• Prefer finer decomposition over coarse ones.
◦ Small tasks may be agglomerated in later stage.

Typical for problems with large central data structures.
53/79

Functional Decomposition

Focus on the decomposition of the computation.

Atmospheric Model

Land Surface Model

Hydrology

 Model Ocean

Model

• Decompose according to the algorithmic structure.
◦ Independent computational blocks.
◦ Independent loop iterations.
◦ Independent (recursive) function invocations.

• Determine data requirements of each task.
◦ If requirements overlap, communication is required.

Typical for problems without central data structures.
54/79

Partitioning Design Checklist

• Is number of tasks large enough?
◦ Order of magnitude larger than processor number.
◦ Keeps flexibility for further stages.

• Does number of tasks scale with problem size?
◦ Larger problems can be solved with more processors.

• Are the tasks of comparable size?
◦ Otherwise load balancing may become difficult.

• Are redundant computations and data avoided?
◦ Otherwise scalability may suffer.

• Have alternative partitions been considered?
◦ Try both domain and functional decomposition.

Do we have sufficient concurrency?

55/79

Communication

Specify flow of information between tasks.

• Describe communication structure by “channels”.
◦ Connections between those tasks that produce data and

those that consume them.
◦ Typically easy to determine for functional decomposition

from data flow between tasks.
◦ May be complex to determine for domain decomposition

due to data dependencies.

• Analyze the usage of channels.
◦ Number and sizes of messages flowing through channels.
◦ Temporal relationship/dependencies between messages

flowing through different channels.

Also a healthy exercise for shared memory programs.

56/79

Types of Communication

• Local versus global:
◦ Communication with a small set of tasks (“neighbors”) or

with many other tasks.

• Structured versus unstructured:
◦ Communication forms a regular structure (tree, grid, . . .) or

an arbitrary graph.

• Static versus dynamic:
◦ Identity of communication partners is known in advance and

does not change or depends on runtime data and may vary.

• Synchronous versus asynchronous:
◦ Producers and consumers cooperate in data transfer or

consumer may acquire data without producer cooperation.

57/79

Local Communication

Example: Jacobi finite differences method.

Xt+1
i,j = 1

8

(
4Xt

i,j +Xt
i−1,j +Xt

i+1,j +Xt
i,j−1 +Xt

i,j+1

)
for t=0 to T-1 do

send X(i,j) to each neighbor

receive X(i-1,j), X(i+1,j), X(i,j-1), X(i,j+1) from neighbors

update X(i,j)

end

58/79

Global Communication

Example: parallel reduction operation.

S =

n∑
i=0

Xi

1 2 3 4 5 6 7

(0)
(1) (2) (3) (4) (5)

(6)

0

S

(7)

• Centralized algorithm:
◦ Single task becomes bottleneck of communication and

computation.

• Sequential algorithm:
◦ Additions are performed one after each other.

59/79

Global Communication

Example: parallel reduction operation.

n∑
i=j

Xi = Xj +

n∑
i=j+1

Xi

0 1 2 3 4 5 6 7
(6) (5) (4) (3) (2) (1) (0)

X7
∑

6

7∑
5

7∑
4

7∑
3

7∑
2

7∑
1

7

• Decentralized algorithm:
◦ Communication/computation are distributed among tasks.

• But still a sequential algorithm.

60/79

Global Communication

Example: parallel reduction operation.

j+k∑
i=j

Xi =
(j+bk/2c∑

i=j

Xi

)
+
(j+k∑
i=j+bk/2c+1

Xi

)

0 1 2 3 4 5 6 7

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

∑ 0

3

∑ 0

7

∑ 4

7

• Decentralized and parallel algorithm:
◦ Up to k/2 additions can be performed in parallel.

61/79

Unstructured/Dynamic Communication

Example: finite element method.

• Mesh of points representing a physical object.
◦ Simulation of, e.g., the impact of force on the object.
◦ Shape of the mesh is modified by the impact.

• Domain decomposition.
◦ Unstructured communication: mesh is irregular.
◦ Dynamic communication: mesh changes.

62/79

Asynchronous Communication

Example: management of a shared data structure.

C C C C

D D D D

read(1)1 read(3)
3

write(5)

0 1 2 3 4 5 6 7

• A set of “data tasks” manages a shared data structure.
◦ Data structure is distributed among tasks.

• A set of “computing tasks” produce and consume data.
◦ Exchange of messages between computing tasks and data

tasks for reading and writing the data structure.

Consumption of data decoupled from their production.

63/79

Communication Design Checklist

• Do all tasks perform the same amount of communication?

• Does each task communicate only with a few neighbors?

• Can the communication operations proceed concurrently?

• Can the computation operations proceed concurrently?

Do we have the potential for scalability?

64/79

Agglomeration

In the previous phases we have developed a parallel algorithm.

• Algorithm not efficiently executable.
◦ Large number of small tasks.
◦ Large amount of communication.

• Combine tasks to larger tasks.
◦ Increase the granularity of tasks.

Granularity: the ratio of
computation to communication.

◦ Still retain design flexibility.
Sufficiently many tasks for
scalability and mapping flexibility.

◦ Reduce engineering costs.
Avoid effort of parallelization
where it does not pay off.

(a)

(c)

(b)

(d)

65/79

Increasing Granularity: Surface to Volume

• Before: granularity 1/4 = 0.25.
◦ 1 local computation operation.
◦ 4 data items sent.

• After: granularity 16/16 = 1.
◦ 16 local computation operations.
◦ 16 data items sent.

• Surface to Volume Effect
◦ Typical for domain decomposition.
◦ Communication proportional to

“surface” of subdomain.
◦ Computation proportional to

“volume” of subdomain.
◦ Surface grows slower than volume.

Square: S/V = 4a/a2 = 4/a.

(a)

(b)

Decreasing surface-to-volume ratio increases granularity. 66/79

Increasing Granularity:
Replicating Computation

Communication may be decreased by replicating computation.

Example: two algorithms computing a global sum in N tasks.

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3
s s s b b b

s s s s

s s
b b

b b b b

Time 2(N − 1) resp. 2 log2N for performing N − 1 additions.

67/79

Increasing Granularity:
Replicating Computation

A replicating algorithm computing a global sum in N tasks.

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

∑ 0

3

∑ 0

7

∑ 4

7

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

1 2 3 4 5 6 70

∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7

∑ 0

3
∑ 0

3
∑ 0

3
∑ 4

7
∑ 4

7
∑ 4

7

Time log2N for performing N logN additions.

68/79

Increasing Granularity:
Avoiding Communication

Agglomerate tasks that cannot execute concurrently.

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3
s s s b b b

s s s s

s s
b b

b b b b

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

∑ 0

3

∑ 0

7

∑ 4

7

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

1 2 3 4 5 6 70

∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7

∑ 0

3
∑ 0

3
∑ 0

3
∑ 4

7
∑ 4

7
∑ 4

7

Only N agglomerated tasks are needed.
69/79

Retaining Design Flexibility

Do not “over-agglomerate”.

• Goal is not a fixed number of tasks.
◦ Task number should grow with problem and machine size.
◦ Algorithm should remain scalable.

• Goal is not one task per processor.
◦ There shold be still multiple tasks per processor.
◦ If one task is blocked, another one may execute and keep

the processor busy.

Agglomeration should not “hardwire” the algorithm to a fixed
problem and machine size.

70/79

Reducing Engineering Costs

• Try to avoid extensive code changes.
◦ One partitioning/agglomeration may be much more difficult

to implement than another.

• Try to avoid extensive data structure changes.
◦ Conversions from/to data structures given by the context of

the parallel application may be cumbersome.

Consider also the costs of development in relation to the
expected performance gains.

71/79

Agglomeration Design Checklist

• Has communication been reduced (granularity increased)?

• Does computation replication outweigh its costs?

• Does data replication not limit scalability?

• Have tasks still similiar sizes?

• Is there still sufficient concurrency?

• Does the number of tasks still scale with problem size?

• Can task number be reduced without limiting flexibility?

• Are the engineering costs reasonable?

Do we have sufficient execution efficiency?

72/79

Mapping

We need a strategy for mapping tasks to processors (cores).

• Only a problem for systems with distributed memory or
shared memory with non-uniform memory access.

◦ On multi-core processors and SMP systems, the automatic
placement of tasks to cores by the OS suffices.

• Conflicting goals:
◦ Place tasks that are able to execute concurrently on

different processors.
◦ Place tasks that communicate frequently on the same

processor.

The mapping problem is NP-complete, so we can in general
only hope for good heuristics.

73/79

Types of Mapping

• Static mappings:
◦ A fixed number of permanent tasks is mapped at program

start to processors; this mapping does not change.

• Load balancing algorithms:
◦ The assignment of permanent tasks to processors is

adapted at runtime to keep processors equally busy.
• Task scheduling algorithms:

◦ Many short-living tasks are created at runtime; a scheduler
maps tasks to processors where they run until termination.

Static mapping is usually only sufficent for domain
decomposition with structured communication.

74/79

Static Mappings: Recursive Bisection

Recursively divide domain into partitions with equal costs.

• Recursive coordinate bisection:
◦ Recursively cut multi-dimensional grid at longest dimension.

• Unbalanced recursive bisection:
◦ Choose among partitions the one with lowest aspect ratio.

• Recursive graph bisection:
◦ Decompose graph according to distance from extremities.

75/79

Load Balancing: Local Algorithms

Compare load with that neighbor processors; transfer load if
difference gets too big.

Use only local information and that of neighbor processors.

76/79

Task Scheduling

Maintain pool of tasks to which all new tasks are added.

manager

p
p

p
p

p
pW

W

W
W

W

W

W

• Manager/worker scheme:
◦ Manager controls pool; idle workers ask manager for tasks.

• Hierarchical manager/worker scheme:
◦ Subsets of workers with own submanagers and subpools.
◦ Submanagers interact with manager (and each other).

• Decentralized schemes:
◦ Each worker maintains its own task pool.
◦ Idle workers request tasks from other workers.

Termination detection may become an issue. 77/79

Mapping Design Checklist

• If considering a program where tasks are only created at
startup, have you also considered task scheduling?

• If considering task scheduling, have you also considered a
program where tasks are only created at startup?

• If considering load-balancing, have you evaluated simpler
alternatives such as probabilistic or cyclic mappings?

• If considering probabilistic or cyclic mappings, have you
verified that task number is large enough to balance load?

• If considering task scheduling, have you verified that the
manager does not become a bottleneck?

Do we have sufficient processor utilization?

78/79

General Recommendations

• Be sure to parallelize the actual hotspots of a program.
◦ First you must understand where computation time is spent.

• Consider alternatives.
◦ Do not just implement the first scheme that comes to mind.

• Remember scalability.
◦ You may get more cores available than originally thought.

• But also consider the coding effort.
◦ A simple solution may be sufficient as a starting point.

• And do not forget the application context.
◦ The parallel code must be integrated into a bigger system.

Ultimately, determining the most efficient parallelization
strategy for a given problem may require multiple iterations of
performance debugging and optimizing/rewriting the code.

79/79

	HPC Architectures
	OpenMP
	MPI
	Parallel Program Design

