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Goals of this Thesis and
Presentation

• extension of RISCTP/RISCAL by a saturation-based
automated theorem prover for first-order logic with
equality
• the theoretical basis for such a prover and the support

for special theories (integer and arrays)
• implementation of the prover
• experiments and tests with the prover

• overview and theoretic understanding of the important
proving techniques needed for the prover
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Preliminaries

• classical first-order predicate logic with equality
• all standard logical connectives (¬,∧,∨,⇒,⇔) and

quantifiers (∀, ∃)
• propositional constants > (always true) and ⊥ (always

false)
• in addition the binary predicate symbol =

Theorem (Herbrand’s theorem)
A quantifier-free formula p is first-order satisfiable if and
only if the set of all its ground instances is (propositionally)
satisfiable.
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Preliminaries

Definition
Let I be an inference system and S a set of formulas in I .
If S is unsatisfiable, then the empty clause � is derivable
from S in I . I is then called refutation complete
(sometimes also refutationally complete) .

Definition
A selection function is a mapping, which selects in every
clause C a non-empty subset of literals (or equations).
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Preliminaries

Definition
An ordering � on terms is denoted as a simplification
ordering on terms if these statements are fulfilled:
• � is well-founded, i.e., there is no infinite sequence of

terms s, t, . . . such that s � t � . . .
• � is monotonic, i.e., if s � t, then r [s ] � r [t ] for all

terms r , s, t
• � is stable under substitutions, i.e., if s � t, then also

sσ � tσ for all terms s, t and all substitutions σ

• � has the subterm property, i.e., if s is a subterm of t
and s 6= t, then t � s
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Resolution

One version of resolution combines the two inference rules
“(binary) resolution” and “factoring” to a single rule:

C ∨ A∨ . . . ∨ A ¬A∨D
C ∨D

Remark
Remember first-order resolution uses unification. But a
MGU might be too general. This means we have to
additionally consider unifying some subset of the literals in
the same clause (Lifting Lemma).
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Refutation Completeness

Theorem
Let S be a set of first-order clauses. If S is unsatisfiable,
then the empty clause � is derivable by resolution.

Proof.
Let S be a set of first-order clauses. Then by Herbrand’s theorem
and compactness, there is a finite set of ground instances of clauses
in S that is unsatisfiable. By the refutation completeness of the
propositional resolution the empty clause is derivable by resolution.
Let C ′ be an instance of C . Using induction on the structure, it is
possible to apply the lifting lemma to show that for each subproof of
a clause C ′ there exists a corresponding proof using first-order
resolution of a clause C . To finally conclude the empty clause, the
empty clause has to be derivable by first-order resolution, because the
empty clause cannot be an instance of a non-empty clause.
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Resolution

• selection functions and simplification orderings as
control mechanisms
• restrict resolution on the maximal atoms in the side

premise only
• sufficient to only resolve on negative literals in a

non-deterministic way
• by simultaneously resolving on more than one atom we

achieve a larger inference step
• still refutation complete

C1 ∨ A1 ∨ . . . ∨ A1 . . . Cn ∨ An ∨ . . . ∨ An ¬A1 ∨ . . . ∨ ¬An ∨D
C1 ∨ . . . ∨ Cn ∨D
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Paramodulation

Let’s consider the paramodulation inference rule for
variable free formulas:

Γ1 → ∆1, s = t Γ2 → ∆2, u[s ] = v
Γ1, Γ2 → ∆1, ∆2, u[t ] = v

Remark
To restrict the number of inferences computed during the
proof search term orderings are an important tool. Assume
� is an ordering which is total on variable-free terms and
formulas. The basic idea of ordered paramodulation is to
only replace big terms by smaller ones according to �;
same idea as in ordered rewriting.
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Paramodulation

Definition
A paramodulation inference is called ordered (with respect
to �) if the following conditions are fulfilled:

1 s � t
2 s = t is strictly maximal with respect to Γ1 ∪ ∆1
3 u[s ] = v is strictly maximal with respect to Γ2 ∪ ∆2
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Superposition

Definition
An ordered paramodulation inference is called a
superposition inference if the additional condition is
satisfied:

4 u[s ] � v
If s does not occur in Γ1 the superposition inference is
called strict. A weak superposition inference denoted a
paramodulation inference for which the conditions (1), (3)
and (4) hold (but (2) is not necessary).
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Superposition

We define the following inference rules with respect to the
reduction ordering �:

Γ, u = v → ∆ (Equality resolution)
Γσ→ ∆σ

where σ is a MGU of u and v and uσ = vσ is a maximal equation in
Γσ, uσ = vσ→ ∆σ.

Γ→ ∆,A,B (Ordered factoring)
Γσ→ ∆σ,Aσ

where σ is a MGU of A and B and Aσ is a maximal equation in
Γσ→ ∆σ, Aσ, Bσ.
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Superposition

Γ1 → ∆1, s = t Γ2, u[s ′] = v → ∆2 (Superpos. left)
Γ1σ, Γ2σ, u[t ]σ = vσ→ ∆1σ, ∆2σ

where σ is a MGU of s and s ′; Γ1σ→ ∆1σ, sσ = tσ is a reductive clause
for sσ = tσ; vσ ≺ uσ and uσ = vσ is a maximal equation in
uσ = vσ, Γ2σ→ ∆2σ; and s ′ is not a variable.

Γ1 → ∆1, s = t Γ2 → ∆2, u[s ′] = v
(Superpos. right)

Γ1σ, Γ2σ→ ∆1σ, ∆2σ, u[t ]σ = vσ

where σ is a MGU of s and s ′; Γ1σ→ ∆1σ, sσ = tσ is a reductive clause
for sσ = tσ; Γ2σ→ uσ = vσ, ∆2 is a reductive clause for uσ = vσ; and s ′

is not a variable.
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Superposition

To achieve refutation completeness the inference system
gets combined with additional rules. We could for example
add this paramodulation inference rule called Merging
Paramodulation:

Γ1 → ∆1, s = t Γ2 → ∆2, u = v [s ′], u′ = v ′

Γ1σ, Γ2 → ∆1σ, ∆2σ, uσ = v [t ]σ, uσ = v ′σ
where σ = τρ is the composition of a MGU τ of s and s ′ and a MGU ρ of
uτ and u′τ; Γ1σ→ ∆1σ, sσ = tσ is a reductive clause for sσ = tσ;
Γ2σ→ ∆2σ, uσ = vσ, u′σ = v ′σ is a reductive clause for uσ = vσ;
uτ � vτ and v ′σ ≺ vσ; and s ′ is not a variable.
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Refutation Completeness

• model generation method based on strict superposition
i.e. the paramodulation involves only maximal terms of
maximal equations of clauses
• introduce the concept on ground Horn clauses with

equality only
• inference system I : Superposition right, superposition

left, equality resolution
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Proof Idea
• Let S be a set of ground Horn clauses closed under the

inference system I
• If � /∈ S, then S is satisfiable
• An equality Herbrand interpretation will be

constructed, then we can show that this interpretation
is a model of S
• We construct the interpretation by a congruence R∗

created by a set of ground rewrite rules R
• Every of these rules has been generated by some

clause of S
• This generation process is formally defined by

induction on the ordering �C
• Every clause C in S either generates a rule or not.
• This depends on the set RC of rules generated by

clauses D in S where C �C D
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Further Work

What we have done so far:
• State of the art
• Throughout theoretical representation of the concepts

needed for the prover

What we are doing now:
• Collecting strategies to make those concepts

reasonably efficient
• Designing the prover
• Start with the implementation of the prover
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