The pi-Calculus (Part 1)

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.uni-linz.ac.at

The pi-Calculus

Process calculus developed in continuation of the work on CCS.

- Robin Milner, Joachim Parrow, David Walker. A Calculus of Mobile Processes. Information and Computation, 100:1–40, 1992.
- Robin Milner. *Elements of Interaction*. Turing Award Lecture. Communications of the ACM, 36(1):78–89, January 1993.
- Robin Milner. The Polyadic π-calculus: a Tutorial. F.L. Bauer et al (eds), Logic and Algebra of Specification, Springer 1993, pp. 203–246.
- Designed to capture mobility.
 - Concurrent systems whose configuration may change.
- Highly influential with many extensions and applications:
 - Abadi and Gordon (1997): Spi-calculus (cryptographic protocols).
 - Shapiro et al (2000): BioSPI (biological processes).
 - Formal modeling of web service architectures (WS-BPEL, ...).
 - Semantics of object-oriented languages.

. . . .

1. CCS Revisited

2. From CCS to the $\pi\text{-}\text{Calculus}$

3. The π -Calculus

Wolfgang Schreiner

■ $P_1 + P_2 + P_3 - \sum_{i \in \{1,2,3\}} P_i$ ■ $0 = \sum_{i \in \emptyset} P_i$ ■ Restriction new *a P* ■ Name *a* is bound (not free) in the restriction.

Wolfgang Schreiner

http://www.risc.jku.at

Process Congruence: an equivalence relation \simeq on concurrent process expressions is a *process congruence*, if $P \simeq Q$ implies

$$a.P + M \simeq \alpha.Q + M$$

- $\blacksquare \text{ new } a P \simeq \text{ new } a Q$
- $P|R \simeq Q|R, R|P \simeq R|Q$

■ Structural Congruence: the structural congruence ≡ is the process congruence defined by the following equations:

- 1. Change of bound names (alpha-conversion).
- 2. Reordering of terms in a summation.
- 3. $P|0 \equiv P, P|Q \equiv Q|P, P|(Q|R) \equiv (P|Q)|R.$
- 4. new $a(P|Q) \equiv P|$ new aQ, if a not free in P.

new
$$a \ 0 \equiv 0$$
, new $a \ b \ P \equiv$ new $b \ a \ P$.

5.
$$A\langle \vec{b}
angle \equiv \{ \vec{b}/\vec{a} \} P_A$$
, if $A(\vec{a}) := P_A$.

Used in the definition of the possible process reactions.

Standard Forms

Standard Form: a process expression

new \vec{a} $(M_1 \mid \ldots \mid M_n)$

- Each M_i is a non-empty sum.
- If n = 0, the standard form is new $\vec{a} \ 0$.
- If \vec{a} is empty, the standard form is $M_1 \mid \ldots \mid M_n$.

Theorem: Every process is structurally congruent to a standard form.

Reactions

■ Reaction Relation →: set of those transitions that can be inferred from the following rules:

TAU
$$\tau.P + M \to P$$

REACT $(a.P + M)|(\bar{a}.Q + N) \to P|Q$
PAR $\frac{P \to P'}{P|Q \to P'|Q}$
RES $\frac{P \to P'}{\text{new } a P \to \text{new } a P'}$
STRUCT $\frac{P \to P'}{Q \to Q'}$, if $P \equiv Q$ and $P' \equiv Q'$

The internal reactions within a process.

Transition Relation $\stackrel{\alpha}{\rightarrow}$: set of transitions that can be inferred from the following rules (where α is either a label λ or τ): $SUM_{t} M + \alpha P + N \xrightarrow{\alpha} P$ $\mathsf{REACT}_t \xrightarrow{P \xrightarrow{\lambda} P' Q \xrightarrow{\lambda} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$ $\mathsf{LPAR}_t \xrightarrow{P \xrightarrow{\alpha} P'}_{P|Q \xrightarrow{\alpha} P'|Q} \mathsf{RPAR}_t \xrightarrow{Q \xrightarrow{\alpha} Q'}_{P|Q \xrightarrow{\alpha} P|Q'}$ $\operatorname{RES}_{t} \xrightarrow{P \xrightarrow{\alpha} P'} \operatorname{rew} a \xrightarrow{P'} \operatorname{if} \alpha \notin \{a, a'\}$ $\mathsf{IDENT}_t \xrightarrow{\{\vec{b}/\vec{a}\}P_A \xrightarrow{\alpha} P'}_{\Delta/\vec{b}\setminus \xrightarrow{\alpha} P'} \mathsf{if} A(\vec{a}) := P_A$

The external interactions with other processes.

Wolfgang Schreiner

- Structural Congruence Respects Transition: If $P \xrightarrow{\alpha} P'$ and $P \equiv Q$, then there exists some Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \equiv Q'$.
- Structurally congruent process expressions have the same transitions.
 Reaction Agrees with *τ*-Transition: P → P' if and only if there exists some P'' such that P ⁻→ P'' and P'' ≡ P'.
 - \rightarrow corresponds to the silent transition $\xrightarrow{\tau}$ (modulo congruence).

Theory of strong bisimilarity/equivalence and weak bisimilarity/observation equivalence as already discussed.

1. CCS Revisited

2. From CCS to the $\pi\text{-}\text{Calculus}$

3. The π -Calculus

Wolfgang Schreiner

What entities do move in what space?

- 1. Processes move in the physical space of computing sites.
- 2. Processes move in the virtual space of linked processes.
- 3. Links move in the virtual space of linked processes.
- 4. ...
- The π -Calculus is based on option (3).
 - The location of a process in a virtual space of processes is determined by its links to other processes.
 - The neighbors of a process are those processes that it can talk to.
 - Movement of a process can be described by the movement of links.
 - Option (2) can be thus reduced to option (3).
- Other calculi address option (1) more directly.
 - Ambient Calculus (Cardelli and Gordon, 1998): processes move between *ambients* (locations of activities).

The π -calculus describes a logical (not physical) view of mobility.

Mobility in CCS

$S := \mathsf{new} \ c \ (A|C) \ | \ B$

• A and C share an internal port c.

• A and B communicate with the external world via ports a and b.

How may the shape of S change by process transitions?

Mobility in CCS

$A := (a.\mathsf{new} \ d \ (A|A')) + c.A''$

- A may interact with environment at a.
- A then splits into A and A' sharing an internal port d.
 - A receives a service request at *a* and generates a deputy A' to which this task is delegated (e.g. a multi-threaded web server).

A component may generate new components.

Mobility in CCS

A' := c.0

- A' and C may communicate via c.
- A' then dies.
 - A' has performed the assigned task.

A component may disappear.

Limitations of CCS

$$S := \text{new } c (A|C) \mid B$$

How to achieve the following transition?

It is not possible to create new links between existing components.

- Moving cars connected by wireless links to transmitters.
- Transmitters connected by fixed wires to a central control.
- Wireless connection of a car may be handed over from one transmitter to another.
 - Signal to original transmitter has faded by movement of car.

Virtual movement of links triggered by physical movement of cars.

A π -Calculus Model

System with one car and two transmitters.

System :=

 $\begin{array}{l} \mathsf{new} \ talk_1, \mathsf{switch}_1, \mathsf{gain}_1, \mathsf{lose}_1, \mathsf{talk}_2, \mathsf{switch}_2, \mathsf{gain}_2, \mathsf{lose}_2 \\ (\mathit{Car}\langle \mathsf{talk}_1, \mathsf{switch}_1\rangle | \mathit{Trans}\langle \mathsf{talk}_1, \mathsf{switch}_1, \mathsf{gain}_1, \mathsf{lose}_1\rangle | \\ \mathit{Idtrans}\langle \mathsf{gain}_2, \mathsf{lose}_2\rangle | \mathit{Control}_1). \end{array}$

Descriptions of car and transmitters parameterized over current links.

Wolfgang Schreiner

http://www.risc.jku.at

 $Car(talk, switch) := \overline{talk}.Car(talk, switch) + switch(t, s).Car(t, s).$

 $\begin{aligned} & \textit{Trans(talk, switch, gain, lose)} := \\ & \textit{talk}.\textit{Trans}\langle\textit{talk}, \textit{switch}, \textit{gain}, \textit{lose}\rangle + \\ & \textit{lose}(t, s).\overline{\textit{switch}}\langle t, s\rangle.\textit{Idtrans}\langle\textit{gain}, \textit{lose}\rangle. \\ & \textit{Idtrans}(\textit{gain}, \textit{lose}) := \textit{gain}(t, s).\textit{Trans}\langle t, s, \textit{gain}, \textit{lose}\rangle. \end{aligned}$

 $\begin{aligned} & \textit{Control}_1 := \overline{\textit{lose}_1}\langle \textit{talk}_2, \textit{switch}_2 \rangle. \overline{\textit{gain}_2}\langle \textit{talk}_2, \textit{switch}_2 \rangle. \textit{Control}_2. \\ & \textit{Control}_2 := \overline{\textit{lose}_2}\langle \textit{talk}_1, \textit{switch}_1 \rangle. \overline{\textit{gain}_1}\langle \textit{talk}_1, \textit{switch}_1 \rangle. \textit{Control}_1. \end{aligned}$

Link names may be transmitted as messages; received link names may be used for sending messages.

1. CCS Revisited

2. From CCS to the $\pi\text{-}\text{Calculus}$

3. The π -Calculus

The π -Calculus

- **Names:** $\{x, y, z, ...\}$.
- Action Prefixes: $\pi ::= x(y) | \overline{x} \langle y \rangle | \tau$.
 - x(y) ... receive y along x.
 - $\overline{x}\langle y \rangle$... send y along x.
 - \bullet τ ... unobservable action.
- π-Calculus Process Expressions:

$$P ::= \sum_{i \in I} \pi_i . P_i \mid P_1 \mid P_2 \mid \text{new } a \mid P \mid !P$$

- Summation $\sum_{i \in I} \alpha_i P_i$ with finite indexing set *I*.
- Restriction new y and input action x(y) both bind name y.
- Replication !*P* instead of process identifiers and defining equations.

Monadic version of calculus (each message contains exactly one name).

Wolfgang Schreiner

http://www.risc.jku.at

$$P := \text{new } z \ ((\bar{x}\langle y \rangle + z(w).\bar{w}\langle y \rangle) \mid x(u).\bar{u}\langle v \rangle \mid \bar{x}\langle z \rangle).$$

$$\blacksquare \text{ Two possible reactions } P \to P_1 \text{ and } P \to P_2$$

$$P_1 = \text{new } z \ (0 \mid \bar{v}\langle v \rangle \mid \bar{x}\langle z \rangle).$$

$$P_2 = \operatorname{new} z \left(\left(\overline{x} \langle y \rangle + z(w) \cdot \overline{w} \langle y \rangle \right) \mid \overline{z} \langle v \rangle \mid 0 \right).$$

• One possible reaction
$$P_2 \rightarrow P_3$$

 $P_3 = \text{new } z \ (\bar{v} \langle y \rangle \mid 0 \mid 0).$

No other reactions are possible.

Process Congruence: an equivalence relation \simeq on π -calculus process expressions is a *process congruence*, if $P \simeq Q$ implies

$$\pi.P + M \simeq \pi.Q + M$$

$$\bullet \operatorname{new} x P \simeq \operatorname{new} x Q$$

$$P|R \simeq Q|R, R|P \simeq R|Q$$

$$|P \simeq |Q|$$

Structural Congruence: the structural congruence ≡ is the process congruence defined by the following equations:

- 1. Change of bound names (alpha-conversion).
- 2. Reordering of terms in a summation.
- 3. $P|0 \equiv P, P|Q \equiv Q|P, P|(Q|R) \equiv (P|Q)|R.$
- 4. new $x (P|Q) \equiv P | \text{new } x Q$, if x not free in P. new $x 0 \equiv 0$, new $x y P \equiv \text{new } y x P$.

5.
$$!P \equiv P \mid !P$$

Alpha conversions can also occur for names bound by an input action; the replication operator can generate arbitrarily many instances of a process.

Wolfgang Schreiner

Standard Forms

Standard Form: a process expression

new \vec{a} ($M_1 \mid ... \mid M_m \mid !Q_1 \mid ... \mid !Q_n$)

- **Each** M_i is a non-empty sum, each Q_n is in standard form.
- If m = n = 0, the standard form is new $\vec{a} \ 0$.
- If \vec{a} is empty, the standard form is $M_1 \mid \ldots \mid M_m \mid !Q_1 \mid \ldots \mid !Q_n$.

Theorem: Every process is structurally congruent to a standard form.

Reactions

■ Reaction Relation →: set of those transitions that can be inferred from the following rules:

TAU
$$\tau.P + M \to P$$

REACT $(x(y).P + M)|(\bar{x}\langle z \rangle.Q + N) \to \{z/y\}P|Q$
PAR $\frac{P \to P'}{P|Q \to P'|Q}$
RES $\frac{P \to P'}{\text{new } x P \to \text{new } x P'}$
STRUCT $\frac{P \to P'}{Q \to Q'}$, if $P \equiv Q$ and $P' \equiv Q'$

The internal reactions within a process (the external interactions will be formalized later).

Wolfgang Schreiner

Allow action prefixes with multiple messages.

 $x(y_1 \dots y_n).P$ and $\bar{x}\langle z_1, \dots, z_n \rangle.Q$

Obvious encoding in monadic π-calculus:

- $x(y_1)$ $x(y_n)$.P and $\bar{x}\langle z_1 \rangle$... $\bar{x}\langle z_n \rangle$.Q
- Obvious encoding is wrong:
 - $x(y1, y2).P | \bar{x}\langle z_1, z_2 \rangle.0 | \bar{x}\langle z'_1, z'_2 \rangle.0$ should only have transitions to $\{z_1/y_1, z_2/y_2\}P$ and $\{z'_1/y_1, z'_2/y_2\}P$
 - $\begin{array}{l} \mathbf{x}(y_1).\mathbf{x}(y2).P \mid \bar{\mathbf{x}}\langle z_1 \rangle.\bar{\mathbf{x}}\langle z_2 \rangle.0 \mid \bar{\mathbf{x}}\langle z_1' \rangle.\bar{\mathbf{x}}\langle z_2' \rangle.0 \text{ also has transitions to } \\ \{z_1/y_1, z_1'/y_2\}P \text{ and } \{z_1'/y_1, z_1/y_2\}P. \end{array}$
- **Correct** encoding in monadic π -calculus:
 - $x(w).w(y_1).\cdots.w(y_n).P$ and new w $(\bar{x}\langle w \rangle.\bar{w}\langle z_1 \rangle.\cdots.\bar{w}\langle z_n \rangle.Q)$
 - Interference on channel x is avoided by sending a fresh name w along x and then sending the components z_i one by one along w.

We can use the polyadic π -calculus in applications but use the monadic π -calculus as the formal basis.

Wolfgang Schreiner

http://www.risc.jku.at

Use recursively defined process identifiers.

Recursive definition $A(\vec{x}) := Q_A$ whose scope is process $P = \dots A \langle \vec{y} \rangle \dots A \langle \vec{z} \rangle \dots$

Translated using replication as follows:

Invent a new name, say *a*, to stand for *A*.

- Translate every process R to a process \hat{R} by replacing every call $A\langle \vec{w} \rangle$ by the output action $\bar{a}\langle \vec{w} \rangle$.
- Replace the definition of A and P by

new $a(\widehat{P} \mid !a(\vec{x}).\widehat{Q_A})$

- Can be easily generalized to multiple recursive definitions.
- Example: $S(x) := \overline{c}(x).S(x)$ and R := c(x).R in S(y)|R

new s r $(\overline{s}\langle y \rangle | \overline{r} | !s(x).\overline{c}\langle x \rangle.\overline{s}\langle x \rangle | !r.c(x).\overline{r})$

We can also use recursive process definitions in applications.