# The Calculus of Communicating Systems <br> Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University, A-4040 Linz, Austria <br> Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine 

## The Calculus of Communicating Systems (CCS)

- Description of process networks
- Static communication topologies.
- History sketch
- Robin Milner, 1980.
- CCS: Calculus of Communicating Systems.
- Various revisions and elaborations.
- Later extended to mobile processes ( $\pi$-calculus).
- Algebraic approach
- Concurrent system modeled by term.
- Theory of term manipulations.
- Externally visible behavior preserved.
- Observation equivalence
- External communications follow same pattern.
- Internal behavior may differ.


## Modeling of communication and concurrency.

## A Simple Example



- Agent C
- Dynamic system is network of agents.
- Each agent has own identity persisting over time.
- Agent performs actions (external communications or internal actions).
- Behavior of a system is its (observable) capability of communication.
- Agent has labeled ports.
- Input port in.
- Output port out.
- Behavior of $C$ :
$-C:=\operatorname{in}(x) \cdot C^{\prime}(x)$
$-C^{\prime}(x):=\overline{\operatorname{out}}(x) \cdot C$
Process behaviors are defined by (mutually recursive) equations.


## Behavior Descriptions

- Agent names can take parameters.
- Prefix in $(x)$
- Handshake in which value is received at port in and becomes the value of variable $x$.
- Agent expression in $(x) \cdot C^{\prime}(x)$
- Perform handshake and proceed as described by $C^{\prime}$.
- Agent expression $\overline{\text { out }}(x) . C$
- Output the value of $x$ at port out and proceed according to the definition of $C$.
- Scope of local variables:
- Input prefix introduces variable whose scope is the agent expression $C$.
- Formal parameter of defining equation introduces variable whose scope is the equation.


## Another Example



- Bounded buffer $\operatorname{Buff}_{n}(s)$
- Buff $_{n}\langle \rangle:=\operatorname{in}(x)$. Buff $_{n}\langle x\rangle$
- Buff $_{n}\left\langle v_{1}, \ldots, v_{n}\right\rangle:=$ $\overline{\text { out }}\left(v_{n}\right)$.Buff ${ }_{n}\left\langle v_{1}, \ldots, v_{n-1}\right\rangle$
- Buff $_{n}\left\langle v_{1}, \ldots, v_{k}\right\rangle:=$ $\overline{\operatorname{in}}(x)$. Buff $_{n}\left\langle x, v_{1}, \ldots, v_{k}\right\rangle$
$+\overline{\operatorname{out}}\left(v_{k}\right)$. Buff $_{n}\left\langle v_{1}, \ldots, v_{k-1}\right\rangle(0<k<n)$
- Basic combinator ' + '
- $P+Q$ behaves like $P$ or like $Q$.
- When one performs its first action, other is discarded.
- If both alternatives are allowed, selection is nondeterministic.
- Combining forms
- Summation $P+Q$ of two agents.
- Sequencing $\alpha . P$ of action $\alpha$ and agent $P$.

Process definitions may be parameterized.

## Further Examples

\section*{| $\begin{array}{c}\text { big } \\ O\end{array}$ | little |
| :---: | :---: |
| $2 p$ | $1 p$ |
| collect |  |}

- A vending machine:
- Big chocolade costs 2 p , small one costs 1 p .
- $V:=$ 2p.big.collect. $V$
+1 p.little.collect. $V$

- A multiplier
- Twice $:=\operatorname{in}(x) . \overline{\text { out }}(2 * x)$.Twice.
- Output actions may take expressions.


## A Larger Example: The Jobshop



- A simple production line:
- Two people (the jobbers).
- Two tools (hammer and mallet).
- Jobs arrive sequentially on a belt to be processed.
- Ports may be linked to multiple ports.
- Jobbers compete for use of hammer.
- Jobbers compete for use of job.
- Source of non-determinism.
- Ports of belt are omitted from system.
- in and out are external.
- Internal ports are not labelled:
- Ports by which jobbers acquire and release tools.


## The Tools



- Behaviors:
- Hammer := geth.Busyhammer Busyhammer := puth.Hammer
- Mallet $:=$ geth.Busymallet Busymallet := puth.Mallet
- Sort $=$ set of labels
- $P: L \ldots$ agent $P$ has sort $L$
- Hammer: \{geth, puth\}

Mallet: \{getm, putm $\}$ Jobshop: \{in, $\overline{\text { out }\}}$

## The Jobbers



- Different kinds of jobs:
- Easy jobs done with hands.
- Hard jobs done with hammer.
- Other jobs done with hammer or mallet.
- Behavior:
- Jobber := in(job).Start(job)
- Start(job) := if easy(job) then Finish(job)
else if hard(job) then Uhammer(job)
else Usetool(job)
- Usetool(job) := Uhammer(job)+Umallet(job)
- Uhammer(job) $:=\overline{\text { geth. }} \overline{\text { puth. Finish(job) }}$
- Umallet(job) := $\overline{\text { getm.putm.Finish(job) }}$
- Finish(job) $:=\overline{\operatorname{out}(d o n e(j o b)) . J o b b e r ~}$


## CCS

## Composition of Agents



- Jobber-Hammer subsystem
- Jobber | Hammer
- Composition operator
- Agents may procced independently or interact through complementary ports.
- Join complementary ports.
- Two jobbers sharing hammer:
- Jobber | Hammer | Jobber
- Composition is commutative and associative.


## Further Compositon



- Internalisation of ports:
- No further agents may be connected to ports:
- Restriction operator \}
$-\backslash L$ internalizes all ports $L$.
- (Jobber | Jobber | Hammer) <br>{geth,puth\} }
- Complete system:
- Jobshop := (Jobber | Jobber | Hammer | Mallet) $\backslash L$
- $L:=$ \{geth,puth,getm,putm $\}$


## CCS

## Reformulations

- Alternative formulation:
- ((Jobber | Jobber | Hammer) <br>{geth, puth\} }

Mallet) <br>{getm, putm\} }

- Algebra of combinators with certain laws of equivalence.
- Relabelling Operator
- $P\left[l_{1}^{\prime} / l_{1}, \ldots, l_{n}^{\prime} / l_{n}\right]$
$-f(\bar{l})=\overline{f(l)}$
- Semaphore agent
- Sem := get.put.Sem
- Reformulation of tools
- Hammer :=Sem[geth/get, puth/put]
- Mallet $:=$ Sem[getm/get, putm/put]


## CCS

## Equality of Agents

- Strongjobber only needs hands:
- Strongjobber := in(job). $\overline{\text { out }(d o n e(j o b)) . S t r o n g j o b b e r ~}$
- Claim:
- Jobshop = Strongjobber | Strongjobber
- Specification of system Jobshop
- Proof of equality required.

In which sense are the processes equal?

## CCS

## The Core Calculus

- No value transmission between agents
- Just synchronization.
- Agent expressions
- Agent constants and variables
- Prefix $\alpha$.E
- Summation $\Sigma E_{i}$
- Composition $E_{1} \mid E_{2}$
- Restriction $E \backslash L$
- Relabelling $E[f]$
- Names and co-names
- Set $A$ of names (geth, ackin,...)
- Set $A$ of co-names (geth, $\overline{\text { ackin }}, \ldots$ )
- Set of labels $L=A \cup \bar{A}$
- Actions
- Completed (perfect) action $\tau$.
- Act $=L \cup\{\tau\}$
- Transition $P \xrightarrow{l} Q$ with action $l$
- Hammer $\xrightarrow{\text { geth }}$ Busyhammer


## The Transition Rules

- Act $\quad \alpha . E \xrightarrow{\alpha} E$
- $\operatorname{Sum}_{j} \frac{E_{j} \xrightarrow{\alpha} E_{j}^{\prime}}{\Sigma E_{i} \xrightarrow{\alpha} E_{j}^{\prime \prime}}$
- $\operatorname{Com}_{1} \frac{E \xrightarrow{\alpha} E^{\prime}}{E\left|F \xrightarrow{\alpha} E^{\prime}\right| F}$
- Com $_{2} \frac{F \xrightarrow{\alpha} F^{\prime}}{E|F \xrightarrow{\alpha} E| F^{\prime}}$
- $\operatorname{Com}_{3} \xrightarrow{E\left|F \xrightarrow{l} E^{\prime} F \stackrel{\bar{l}}{\rightarrow} F^{\prime}\right| F^{\prime}}$
- Res $\frac{E \xrightarrow{\alpha} E^{\prime}}{E \backslash L \xrightarrow{\alpha} E^{\prime} \backslash L} \quad(\alpha, \bar{\alpha}$ not in $L)$
- Rel $\frac{E \xrightarrow{\alpha} E^{\prime}}{E[f] \xrightarrow{f(\alpha)} E^{\prime}[f]}$
- Con $\frac{P \xrightarrow{\alpha} P^{\prime}}{A \xrightarrow{\alpha} P^{\prime}} \quad(A:=P)$


## The Value-Passing Calculus

- Values passed between agents
- Can be reduced to basic calculus.
$-C:=\operatorname{in}(x) \cdot C^{\prime}(x)$
$C^{\prime}(x):=\overline{\text { out }}(x) . C$
$-C:=\Sigma_{v} \operatorname{in}_{v} \cdot C_{v}^{\prime}$
$C_{v}^{\prime}:=\overline{\mathrm{out}}_{v} . C(v \in V)$
- Families of ports and agents.
- The full language
- Prefixes $a(x) . E, \bar{a}(e) . E, \tau . E$
- Conditional if $b$ then $E$
- Translation
$-a(x) \cdot E \Rightarrow \Sigma_{v} \cdot E\{v / x\}$
$-\bar{a}(e) \cdot E \Rightarrow \bar{a}_{e} \cdot E$
$-\tau . E \Rightarrow \tau . E$
- if $b$ then $E \Rightarrow(E$, if $b$ and 0 , otherwise $)$


## CCS

## Derivatives and Derivation Trees

- Immediate derivative of $E$
- Pair $\left(\alpha, E^{\prime}\right)$
$-E \xrightarrow{\alpha} E^{\prime}$
$-E^{\prime}$ is $\alpha$-derivative of $E$
- Derivative of $E$

$$
\begin{aligned}
& \text { - Pair }\left(\alpha_{1} \ldots \alpha_{n}, E^{\prime}\right) \\
& -E \xrightarrow{\alpha_{1}} \ldots \xrightarrow{\alpha_{n}} E^{\prime} \\
& -E^{\prime} \text { is }\left(\alpha_{1} \ldots \alpha_{n} \text { - }\right) \text { derivative of } E
\end{aligned}
$$

- Derivation tree of $E$



## Examples of Derivation Trees

- Partial derivation tree

$$
(E \mid F) \backslash a
$$



- $a . X+b . Y$

- Behavioural equivalence
- Two agent expressions are behaviourally equivalent if they yield the same total derivation trees


## Transitions

- Agents $A$ and $B$

$$
a \propto \bar{c} \quad c \propto B b
$$

$-A:=a . A^{\prime}, A^{\prime}:=\bar{c} . A$
$-B:=c . B^{\prime}, B^{\prime}:=\bar{b} . B$

- Composite Agent $A \mid B$

$-A \xrightarrow{a} A^{\prime}$ allows $A\left|B \xrightarrow{a} A^{\prime}\right| B$
$-A^{\prime} \xrightarrow{\bar{c}} A$ allows $A^{\prime}|B \xrightarrow{\stackrel{\bar{c}}{\rightarrow}} A| B$
$-A^{\prime} \xrightarrow{\bar{c}} A$ and $B \xrightarrow{c} B^{\prime}$ allows $A^{\prime}|B \xrightarrow{\tau} A| B^{\prime}$
- Restriction $(A \mid B) \backslash c$

$-P \xrightarrow{\alpha} P^{\prime}$ allows $P \backslash L \xrightarrow{\alpha} P^{\prime} \backslash L$
(if $\alpha, \bar{\alpha}$ not in $L$ )


## CCS

## Transition Trees and Graphs

- Transition (derivation) tree

- Transition graph

$-(A \mid B) \backslash c$ b-equivalent to $a . \tau . C$
$-C:=a . \bar{b} . \tau . C+\bar{b} . a . \tau . C$
Behavior can be defined by + and . only!


## Internal versus External Actions

- Action $\tau$ :
- Simultaneous action of both agents.
- Internal to composed agent.
- Internal actions should be ignored.
- Only external actions are visible.
- Two systems are observationally equivalent if they exhibit same pattern of external actions.
$-P \xrightarrow{\tau} P_{1} \xrightarrow{\tau} \ldots \xrightarrow{\tau} P_{n}$ o-equivalent to $P \xrightarrow{\tau} P_{n}$
- $\alpha . \tau . P$ o-equivalent to $\alpha . P$
- Simpler variant of $(A \mid B) \backslash c$ :
- $(A \mid B) \backslash c$ o-equivalent to $a . D$
$-D:=a \cdot \bar{b} \cdot D+\bar{b} \cdot a \cdot D$


## Equality of Agents

- Equality:
- Two agents $P$ and $Q$ should be considered equal if and only if no distinction can be detected by external agent interacting with them.
- Strong (behavioral) equivalence $\sim$ :
$-\tau$ is treated like any other (observable) action.
- Too strong to be considered as equality.
- Weak (observation) equivalence $\approx$ :
$-\tau$ cannot be observed by external agent.
- Not a congruence relation, thus not suitable as equality.
- Observation congruence =:
- Congruence relation, i.e. preserved by all contexts.
- Suitable notion for process equality.
- Relations:
$-P \sim Q$ implies $P=Q$ implies $P \approx Q$
Observation congruence is the equality of the process algebra.


## CCS

## Languages of Agents

- Example agents $A$ and $B$
$-A=a .(b .0+c . d . A)$
$-B=a . b .0+a . c . d . B$

- "Language understood" by $A$ and $B$
- (a.c.d)*.a.b. 0
$-A$ and $B$ seem equivalent.
- Ports $a, b, c, d$.
- Initially only $a$ is "unlocked".
- Observer "presses button" $a$.
- In $A, b$ and $c$ are "unlocked".
- In $B$, sometimes $b$, sometimes $c$ is "unlocked".
- $A$ and $B$ can be experimentally distinguished!

Even agents with the same language can be experimentally distinguished.

## Strong Bisimulation

- Strong bisimulation
- Binary relation $S$ over agents such that $(P, Q) \in S$ implies
- If $P \xrightarrow{\alpha} P^{\prime}$, then $Q \xrightarrow{\alpha} Q^{\prime}$ with $\left(P^{\prime}, Q^{\prime}\right) \in S$ and vice versa.
- For every action $\alpha$, every $\alpha$-derivative of $P$ is equivalent to some $\alpha$-derivative of $Q$.
- Example

- Claim: $(A \mid B) \backslash c=C_{1}$
- True if $S$ is a strong bisimulation:

$$
\begin{aligned}
& S=\left\{\left((A \mid B) \backslash c, C_{1}\right),\left(\left(A^{\prime} \mid B\right) \backslash c, C_{3}\right)\right. \\
& \left.\left(\left(A \mid B^{\prime}\right) \backslash c, C_{0}\right),\left(\left(A^{\prime} \mid B^{\prime}\right) \backslash c, C_{2}\right)\right\}
\end{aligned}
$$

- Check derivatives of each of the eight agents.


## CCS

## Strong Equivalence

- Strong equivalence $P \sim Q$
$-P \sim Q$, if $(P, Q) \in S$ for some strong bisimulation $S$.
$-\sim=\cup\{S: S$ is a strong bisimulation $\}$.
- Corollaries:
$-\sim$ is the largest strong bisimulation.
$-\sim$ is an equivalence relation.
- Proposition:
$-P \sim Q$ iff, for all $\alpha$,
- If $P \xrightarrow{\alpha} P^{\prime}$, then $Q \xrightarrow{\alpha} Q^{\prime}$ with $\left(P^{\prime}, Q^{\prime}\right) \in S$ and vice versa.
- Strong equivalence is a congruence.
- Substitutive under all combinators and recursive definitions.
- Let $P_{1} \sim P_{2}$
$-\alpha . P_{1} \sim \alpha . P_{2}$
$-P_{1}+Q \sim P_{2}+Q$
$-P_{1}\left|Q \sim P_{2}\right| Q$
$-P_{1} \backslash L \sim P_{2} \backslash L$
$-P_{1}[f] \sim P_{2}[f]$


## Observation Equivalence

- (Observation) equivalence:
$-\tau$ action may be matched by zero or more $\tau$ actions.
- Auxiliary definitions:
$-\hat{t}$ is the action sequence gained by deleting all occurences of $\tau$ from $t$.
$-E \xrightarrow{t} E^{\prime}$, if $t=\alpha_{1} \ldots \alpha_{n}$ and $E \xrightarrow{\alpha_{1}} \ldots \xrightarrow{\alpha_{n}} E^{\prime}$.
$-E \stackrel{t}{\Rightarrow} E^{\prime}$ if $t=\alpha_{1} \ldots \alpha_{n}$ and $E(\xrightarrow{\tau})^{*} \xrightarrow{\alpha_{1}}(\xrightarrow{\tau})^{*} \ldots(\xrightarrow{\tau})^{*} \xrightarrow{\alpha_{n}}(\xrightarrow{\tau})^{*} E^{\prime}$.
- $E^{\prime}$ is a $t$-descendant of $E$ iff $E \stackrel{\hat{t}}{\Rightarrow} E^{\prime}$.
- Relationship
$-P \xrightarrow{t} P^{\prime}$ implies $P \stackrel{t}{\Rightarrow} P^{\prime}$ implies $P \stackrel{\hat{t}}{\Rightarrow} P^{\prime}$
- (Weak) bisimulation
- Binary relation $S$ such that $(P, Q) \in S$ implies
- if $P \xrightarrow{\alpha} P^{\prime}$, then $Q \stackrel{\widehat{\alpha}}{\Rightarrow} Q^{\prime}$ with $\left(P^{\prime}, Q^{\prime}\right) \in S$ (and vice versa).
- Observation equivalence $P \approx Q$
$-P \approx Q$ if $(P, Q) \in S$ for some weak bisimulation $S$.
$-\approx=\cup\{S: S$ is a weak bisimulation $\}$


## Examples



- Agents $C_{0}$ and $D$
- Bisimulation $S=$

$$
\left\{\left(C_{0}, D\right),\left(C_{1}, D_{1}\right),\left(C_{2}, D_{2}\right),\left(C_{3}, D\right)\right\}
$$

- No strong bisimulation containing $\left(C_{3}, D\right)$ since $C_{3} \xrightarrow{\tau} C_{0}$ but there is no $D \xrightarrow{\tau} D^{\prime}$.
- Agents $A$ and $B$

$$
\begin{aligned}
-A_{0} & =a \cdot A_{0}+b \cdot A_{1}+\tau \cdot A_{1} \\
A_{1} & =a \cdot A_{1}+\tau \cdot A_{2} \\
A_{2} & =b \cdot A_{0} \\
-B_{1} & =a \cdot B_{1}+\tau \cdot B_{2} \\
B_{2} & =b \cdot B_{1}
\end{aligned}
$$

- Bisimulation $S=\left\{\left(A_{0}, B_{1}\right),\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)\right\}$ (note that $B_{1} \stackrel{b}{\Rightarrow} B_{1}!$ )


## Properties of Bisimulation

- Propositions:
$-\approx$ is the largest bisimulation.
$-\approx$ is an equivalence relation.
$-P \approx \tau . P$
- $\approx$ is not a congruence:
$-\approx$ not preserved by summation.
$-a .0+b .0 \approx a .0+\tau . b .0$ does not hold!
- Proof: if $(P, Q)$ were in a bisimulation $S$, then, since $Q$ $\xrightarrow{\tau} b .0$, we need $\left(P^{\prime}, b .0\right)$ in $S$ with $P \stackrel{\epsilon}{\Rightarrow} P^{\prime}$. But the only $P^{\prime}$ is $P$ itself but $(P, b .0)$ can be not in $S$, since $P \xrightarrow{a} 0$, while $b .0$ has no $a$-descendant.


## Equality not yet fully captured.

## Observation Congruence

- $P=Q$ (observation congruence)
- If $P \xrightarrow{\alpha} P^{\prime}$, then $Q \stackrel{\alpha}{\Rightarrow} Q^{\prime}$ with $P^{\prime} \approx Q^{\prime}$ (and vice versa).
- Preserved under all process operators.
- Relationship to observation equivalence:
$-P$ is stable if $P$ has no $\tau$-derivative.
- If $P \approx Q$ and both are stable, then $P=Q$.
- If $P \approx Q$ then $\alpha \cdot P=\alpha \cdot Q$

Observation congruence is the equality of the process algebra.

## CCS

## Equational Laws

- Static laws
- Static combinators: composition, restriction, labelling.
- Action rules do not change graph structure.
- Algebra of flow graphs.
- Dynamic laws
- Dynamic combinators: prefix, summation, constants.
- Action rules change graph structure.
- Algebra of transition graphs.
- Expansion law
- Relating static laws to dynamic laws.

Laws for equality reasoning on processes.

## CCS

## Static Laws

- Composition laws
$-P|Q=Q| P$
$-P|(Q \mid R)=(P \mid Q)| R$
$-P \mid 0=P$
- Restriction laws
$-P \backslash L=P$, if $L(P) \cap(L \cup \bar{L})=\emptyset$.
$-P \backslash K \backslash L=P \backslash(K \cup L)$
—...
- Relabelling laws
$-P[l d]=P$
$-P[f]\left[f^{\prime}\right]=P\left[f^{\prime} \circ f\right]$
- ...


## CCS

## Dynamic Laws

- Monoid laws

$$
\begin{aligned}
& -P+Q=Q+P \\
& -P+(Q+R)=(P+Q)+R \\
& -P+P=P \\
& -P+0=P
\end{aligned}
$$

- $\tau$ laws

$$
\begin{aligned}
& -\alpha . \tau . P=\alpha . P \\
& -P+\tau . P=\tau . P \\
& -\alpha .(P+\tau . Q)+\alpha \cdot Q=\alpha \cdot(P+\tau . Q)
\end{aligned}
$$




## Non-Laws

- $\tau . P=P$
$-A=a . A+\tau . b . A$
$-A^{\prime}=a \cdot A^{\prime}+b . A^{\prime}$
- $A$ may switch to state in which only $b$ is possible.
$-A^{\prime}$ always allows $a$ or $b$.
- $\alpha \cdot(P+Q)=\alpha \cdot P+\alpha \cdot Q$
$-a .(b . P+c . Q)=a . b . P+a . c . Q$
- b. $P$ is $a$-derivative of right side, not capable of $c$ action.
- $a$-derivative of left side is capable of $c$ action!
- Action sequence $a, c$ may yield deadlock for right side.


## CCS

## The Expansion Law

- The Expansion Law

$$
\begin{aligned}
& \text { - Let } P \equiv\left(P_{1}\left[f_{1}\right]|\ldots| P_{n}\left[f_{n}\right]\right) \backslash L \\
& -P=\Sigma\left\{f_{1}(\alpha) .\left(P_{1}\left[f_{1}\right]|\ldots| P_{i}^{\prime}\left[f_{i}\right]|\ldots| P_{n}\left[f_{n}\right]\right) \backslash L:\right. \\
& \left.\quad P_{i} \xrightarrow{\alpha} P_{i}^{\prime}, f_{i}(\alpha) \text { not in } L \cup \bar{L}\right\} \\
& \quad+\Sigma\left\{\tau .\left(P_{1}\left[f_{1}\right]|\ldots| P_{i}^{\prime}\left[f_{i}\right]|\ldots| P_{j}^{\prime}\left[f_{j}\right]|\ldots| P_{n}\left[f_{n}\right]\right) \backslash L:\right. \\
& \left.\quad P_{i} \xrightarrow{l_{1}} P_{i}^{\prime}, P_{j} \xrightarrow{l_{2}} P_{j}^{\prime}, f_{i}\left(l_{1}\right)=\overline{f_{i}\left(l_{2}\right)}, i<j\right\}
\end{aligned}
$$

- Corollary

$$
\begin{aligned}
& \text { - Let } P \equiv\left(P_{1}|\ldots| P_{n}\right) \backslash L \\
& -P=\Sigma\left\{\alpha \cdot\left(P_{1}|\ldots| P_{i}^{\prime}|\ldots| P_{n}\right) \backslash L:\right. \\
& \left.\quad P_{i} \xrightarrow{\alpha} P_{i}^{\prime}, \alpha \text { not in } L \cup L^{\prime}\right\} \\
& +\Sigma\left\{\tau .\left(P_{1}|\ldots| P_{i}^{\prime}|\ldots| P_{j}^{\prime} \mid \ldots P_{n}\right) \backslash L:\right. \\
& \left.\quad P_{i} \xrightarrow{l} P_{i}^{\prime}, P_{j} \xrightarrow{l} P_{j}^{\prime}, i<j\right\}
\end{aligned}
$$

- Example

$$
\begin{aligned}
& -P_{1}=a . P_{1}^{\prime}+b . P_{1}^{\prime \prime} \\
& -P_{2}=\bar{a} \cdot P_{2}^{\prime}+c . P_{2}^{\prime \prime} \\
& -\left(P_{1} \mid P_{2}\right) \backslash a=b .\left(P_{1}^{\prime \prime} \mid P_{2}\right) \backslash a+c .\left(P_{1} \mid P_{2}^{\prime \prime}\right) \backslash a+\tau .\left(P_{1}^{\prime} \mid P_{2}^{\prime}\right) \backslash a
\end{aligned}
$$

## Summary

- Algebraic approach to system modeling.
- Main interest: how do processes interact with each other?
- Processes/specifications are described by terms.
- Calculus describes process reactions by term manipulation.
- Central notions:
- Strong bisimilarity: equivalence even for internal actions.
- Observation equivalence: equivalence only for observable actions.
- Observation congruence: observation equivalence preserved under all substitutions.

An implementation must "equal" (be observationally congruent to) its specification.

