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CCS

The Calculus of Communicating Sys-
tems (CCS)

•Description of process networks
– Static communication topologies.

• History sketch
– Robin Milner, 1980.

– CCS: Calculus of Communicating Systems.

– Various revisions and elaborations.

– Later extended to mobile processes (π-calculus).

• Algebraic approach
– Concurrent system modeled by term.

– Theory of term manipulations.

– Externally visible behavior preserved.

•Observation equivalence
– External communications follow same pattern.

– Internal behavior may differ.

Modeling of communication and concurrency.
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A Simple Example

C
in out

• Agent C
– Dynamic system is network of agents.

– Each agent has own identity persisting over time.

– Agent performs actions (external communications or in-

ternal actions).

– Behavior of a system is its (observable) capability of com-

munication.

• Agent has labeled ports.
– Input port in.

– Output port out.

• Behavior of C:
– C := in(x).C ′(x)

– C ′(x) := out(x).C

Process behaviors are defined by (mutually re-
cursive) equations.
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Behavior Descriptions

• Agent names can take parameters.

• Prefix in(x)
– Handshake in which value is received at port in and be-

comes the value of variable x.

• Agent expression in(x).C ′(x)
– Perform handshake and proceed as described by C ′.

• Agent expression out(x).C
– Output the value of x at port out and proceed according

to the definition of C.

• Scope of local variables:
– Input prefix introduces variable whose scope is the agent

expression C.

– Formal parameter of defining equation introduces variable

whose scope is the equation.
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Another Example

outin
Buff_n

• Bounded buffer Buff n(s)
– Buff n 〈 〉 := in(x).Buff n 〈x〉
– Buff n 〈v1, . . . , vn〉 :=

out(vn).Buff n 〈v1, . . . , vn−1〉
– Buff n 〈v1, . . . , vk〉 :=

in(x).Buff n 〈x, v1, . . . , vk〉
+ out(vk).Buff n 〈v1, . . . , vk−1〉(0 < k < n)

• Basic combinator ’+’
– P + Q behaves like P or like Q.

– When one performs its first action, other is discarded.

– If both alternatives are allowed, selection is non-

deterministic.

• Combining forms
– Summation P + Q of two agents.

– Sequencing α.P of action α and agent P .

Process definitions may be parameterized.
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Further Examples

big little

2p 1p

collect

• A vending machine:
– Big chocolade costs 2p, small one costs 1p.

– V := 2p.big.collect.V

+ 1p.little.collect.V

outin
Twice

• A multiplier
– Twice := in(x).out(2 ∗ x).Twice.

– Output actions may take expressions.
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A Larger Example: The Jobshop

Jobber

Hammer

Jobber

Mallet outin

• A simple production line:
– Two people (the jobbers).

– Two tools (hammer and mallet).

– Jobs arrive sequentially on a belt to be processed.

• Ports may be linked to multiple ports.
– Jobbers compete for use of hammer.

– Jobbers compete for use of job.

– Source of non-determinism.

• Ports of belt are omitted from system.
– in and out are external.

• Internal ports are not labelled:
– Ports by which jobbers acquire and release tools.
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The Tools

Hammer Mallet
getmgeth

puth putm

• Behaviors:
– Hammer := geth.Busyhammer

Busyhammer := puth.Hammer

– Mallet := geth.Busymallet

Busymallet := puth.Mallet

• Sort = set of labels
– P : L . . . agent P has sort L

– Hammer : {geth, puth}
Mallet: {getm, putm}
Jobshop: {in, out}
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The Jobbers

Jobber

in

geth

puth putm

getm

out

•Different kinds of jobs:
– Easy jobs done with hands.

– Hard jobs done with hammer.

– Other jobs done with hammer or mallet.

• Behavior:
– Jobber := in(job).Start(job)

– Start(job) := if easy(job) then Finish(job)

else if hard(job) then Uhammer(job)

else Usetool(job)

– Usetool(job) := Uhammer(job)+Umallet(job)

– Uhammer(job) := geth.puth.Finish(job)

– Umallet(job) := getm.putm.Finish(job)

– Finish(job) := out(done(job)).Jobber
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Composition of Agents

Jobber

Hammer

geth

in

getm

geth

puth

puth
putm

out

• Jobber-Hammer subsystem
– Jobber | Hammer

– Composition operator |
– Agents may procced independently or interact through

complementary ports.

– Join complementary ports.

• Two jobbers sharing hammer:
– Jobber | Hammer | Jobber

– Composition is commutative and associative.
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Further Compositon

Hammer

Jobber

Jobber

in

getm

putm

out

in out

getm

putm

• Internalisation of ports:
– No further agents may be connected to ports:

– Restriction operator \

– \L internalizes all ports L.

– (Jobber | Jobber | Hammer)\{geth,puth}
• Complete system:

– Jobshop := (Jobber | Jobber | Hammer | Mallet)\L

– L := {geth,puth,getm,putm}
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Reformulations

• Alternative formulation:
– ((Jobber | Jobber | Hammer)\{geth, puth}
| Mallet)\{getm, putm}

– Algebra of combinators with certain laws of equivalence.

• Relabelling Operator
– P [l′1/l1,. . . ,l

′
n/ln]

– f(l) = f (l)

Sem
get

put

• Semaphore agent
– Sem := get.put.Sem

• Reformulation of tools
– Hammer := Sem[geth/get, puth/put]

– Mallet := Sem[getm/get, putm/put]
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Equality of Agents

• Strongjobber only needs hands:
– Strongjobber :=

in(job).out(done(job)).Strongjobber

• Claim:
– Jobshop = Strongjobber | Strongjobber

– Specification of system Jobshop

– Proof of equality required.

In which sense are the processes equal?
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The Core Calculus

• No value transmission between agents
– Just synchronization.

• Agent expressions
– Agent constants and variables

– Prefix α.E

– Summation
∑
Ei

– Composition E1|E2

– Restriction E\L

– Relabelling E[f ]

• Names and co-names
– Set A of names (geth, ackin, . . . )

– Set A of co-names (geth, ackin, . . . )

– Set of labels L = A ∪ A

• Actions
– Completed (perfect) action τ .

– Act = L ∪ {τ}

• Transition P l→ Q with action l

– Hammer
geth→ Busyhammer
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The Transition Rules

• Act α.E α→ E

• Sumj
Ej

α→ E ′
j

∑
Ei

α→ E ′
j

• Com1
E α→ E ′

E|F α→ E ′|F

• Com2
F α→ F ′

E|F α→ E|F ′

• Com3
E l→ E ′ F l→ F ′

E|F τ→ E ′|F ′

• Res
E α→ E ′

E\L α→ E ′\L
(α, α not in L)

• Rel
E α→ E ′

E[f ]
f(α)→ E ′[f ]

• Con
P α→ P ′

A α→ P ′ (A := P )
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The Value-Passing Calculus

• Values passed between agents
– Can be reduced to basic calculus.

– C := in(x).C ′(x)

C ′(x) := out(x).C

– C :=
∑

v inv.C
′
v

C ′
v := outv.C (v ∈ V )

– Families of ports and agents.

• The full language
– Prefixes a(x).E, a(e).E, τ .E

– Conditional if b then E

• Translation
– a(x).E ⇒ ∑

v.E{v/x}
– a(e).E ⇒ ae.E

– τ .E ⇒ τ .E

– if b then E ⇒ (E, if b and 0, otherwise)
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Derivatives and Derivation Trees

• Immediate derivative of E
– Pair (α, E ′)

– E α→ E ′

– E ′ is α-derivative of E

•Derivative of E
– Pair (α1. . .αn, E ′)

– E
α1→ . . .

αn→ E ′

– E ′ is (α1. . .αn-)derivative of E

•Derivation tree of E

E11 . . .
↗α11

E1
↗α1 ↘α12

E E12 . . .
↘α2

E2 . . .
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Examples of Derivation Trees

• Partial derivation tree

(E|F )\a
↗τ

((a.E + b.0)| a.F )\a
↘b

(0| a.F )\a

• a.X + b.Y

X
↗a

a.X + b.Y
↘b

Y

• Behavioural equivalence
– Two agent expressions are behaviourally equivalent if they

yield the same total derivation trees
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Transitions

• Agents A and B

A ca c bB

– A := a.A′, A′ := c.A

– B := c.B′, B′ := b.B

• Composite Agent A|B
B

c
Aa

c
b

– A a→ A′ allows A|B a→ A′|B
– A′ c→ A allows A′|B c→ A|B
– A′ c→ A and B c→ B′ allows A′|B τ→ A|B′

• Restriction (A|B)\c

BAa b

– P α→ P ′ allows P\L α→ P ′\L
(if α, α not in L)
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Transition Trees and Graphs

• Transition (derivation) tree

(A|B)\c

↓a
(A′|B)\c

↓τ
(A|B′)\c

↙b ↘a

(A|B)\c (A′|B′)\c
↓a ↓b

(A′|B)\c (A′|B)\c

. . . . . .

• Transition graph
(A|B’)\c

(A|B)\c (A’|B’)\c

(A’|B)\c

b a

a b

– (A|B)\c b-equivalent to a.τ .C

– C := a.b.τ .C + b.a.τ .C

Behavior can be defined by + and . only!
Wolfgang Schreiner 19



CCS

Internal versus External Actions

• Action τ :
– Simultaneous action of both agents.

– Internal to composed agent.

• Internal actions should be ignored.
– Only external actions are visible.

– Two systems are observationally equivalent if they exhibit

same pattern of external actions.

– P τ→ P1
τ→ . . . τ→ Pn o-equivalent to P τ→ Pn

– α.τ .P o-equivalent to α.P

• Simpler variant of (A|B)\c:
– (A|B)\c o-equivalent to a.D

– D := a.b.D + b.a.D
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Equality of Agents

• Equality:
– Two agents P and Q should be considered equal if and

only if no distinction can be detected by external agent

interacting with them.

• Strong (behavioral) equivalence ∼:
– τ is treated like any other (observable) action.

– Too strong to be considered as equality.

•Weak (observation) equivalence ≈:
– τ cannot be observed by external agent.

– Not a congruence relation, thus not suitable as equality.

•Observation congruence =:
– Congruence relation, i.e. preserved by all contexts.

– Suitable notion for process equality.

• Relations:
– P∼Q implies P=Q implies P≈Q

Observation congruence is the equality of the
process algebra.
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Languages of Agents

• Example agents A and B
– A = a.(b.0 + c.d.A)

– B = a.b.0 + a.c.d.B

a b
A A1 A2

A3

a b

c

d d

c

B B1 B2

B1’ B3

a

• “Language understood” by A and B
– (a.c.d)∗.a.b.0

– A and B seem equivalent.

• Ports a, b, c, d.
– Initially only a is “unlocked”.

– Observer “presses button” a.

– In A, b and c are “unlocked”.

– In B, sometimes b, sometimes c is “unlocked”.

– A and B can be experimentally distinguished!

Even agents with the same language can be
experimentally distinguished.
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Strong Bisimulation

• Strong bisimulation
– Binary relation S over agents such that (P,Q) ∈S implies

– If P α→ P ′, then Q α→ Q′ with (P ′, Q′) ∈ S and vice

versa.

– For every action α, every α-derivative of P is equivalent

to some α-derivative of Q.

• Example

B
c

Aa
c

b

a

b

C2 τ

C0

C3

b

a

C1

– Claim: (A|B)\c = C1

– True if S is a strong bisimulation:

S = { ((A|B)\c, C1), ((A′|B)\c, C3),

((A|B′)\c, C0), ((A′|B′)\c, C2) }
– Check derivatives of each of the eight agents.
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Strong Equivalence

• Strong equivalence P∼Q
– P∼Q, if (P,Q) ∈ S for some strong bisimulation S.

– ∼ = ∪{S: S is a strong bisimulation}.
• Corollaries:

– ∼ is the largest strong bisimulation.

– ∼ is an equivalence relation.

• Proposition:
– P∼Q iff, for all α,

– If P α→ P ′, then Q α→ Q′ with (P ′, Q′) ∈ S and vice

versa.

• Strong equivalence is a congruence.
– Substitutive under all combinators and recursive defini-

tions.

• Let P1 ∼ P2
– α.P1 ∼ α.P2

– P1 + Q ∼ P2 + Q

– P1|Q ∼ P2|Q
– P1\L ∼ P2\L

– P1[f ] ∼ P2[f ]
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Observation Equivalence

• (Observation) equivalence:
– τ action may be matched by zero or more τ actions.

• Auxiliary definitions:
– t̂ is the action sequence gained by deleting all occurences

of τ from t.

– E t→ E ′, if t =α1. . .αn and E
α1→. . .

αn→E ′.

– E t⇒ E ′ if t =α1. . .αn and

E( τ→)∗α1→( τ→)∗. . . ( τ→)∗αn→( τ→)∗E ′.

– E ′ is a t-descendant of E iff E t̂⇒ E ′.

• Relationship

– P t→ P ′ implies P t⇒ P ′ implies P t̂⇒ P ′

• (Weak) bisimulation
– Binary relation S such that (P,Q) ∈ S implies

– if P α→ P ′, then Q α̂⇒ Q′ with (P ′, Q′) ∈ S (and vice

versa).

•Observation equivalence P≈Q
– P≈Q if (P, Q) ∈ S for some weak bisimulation S.

– ≈ = ∪{S : S is a weak bisimulation}
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Examples

a

b

C2 τ

C0

C3

b

a

C1 a b
D

D1 D2

b a

• Agents C0 and D
– Bisimulation S =

{(C0, D), (C1, D1), (C2, D2), (C3, D)}
– No strong bisimulation containing (C3, D) since C3

τ→ C0

but there is no D τ→ D′.

• Agents A and B
– A0 = a.A0 + b.A1+ τ .A1

A1 = a.A1 + τ .A2

A2 = b.A0

– B1 = a.B1+ τ .B2

B2 = b.B1

– Bisimulation S = { (A0, B1), (A1, B1), (A2, B2) } (note

that B1
b⇒ B1!)
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Properties of Bisimulation

• Propositions:
– ≈ is the largest bisimulation.

– ≈ is an equivalence relation.

– P ≈ τ .P

• ≈ is not a congruence:
– ≈ not preserved by summation.

– a.0 + b.0 ≈ a.0+τ .b.0 does not hold!

– Proof: if (P ,Q) were in a bisimulation S, then, since Q
τ→ b.0, we need (P ′, b.0) in S with P ε⇒ P ′. But the only

P ′ is P itself but (P, b.0) can be not in S, since P a→ 0,

while b.0 has no a-descendant.

Equality not yet fully captured.
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Observation Congruence

• P = Q (observation congruence)

– If P α→ P ′, then Q α⇒ Q′ with P ′ ≈ Q′ (and vice versa).

– Preserved under all process operators.

• Relationship to observation equivalence:
– P is stable if P has no τ -derivative.

– If P ≈ Q and both are stable, then P = Q.

– If P ≈ Q then α.P = α.Q

Observation congruence is the equality of the
process algebra.
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Equational Laws

• Static laws
– Static combinators: composition, restriction, labelling.

– Action rules do not change graph structure.

– Algebra of flow graphs.

•Dynamic laws
– Dynamic combinators: prefix, summation, constants.

– Action rules change graph structure.

– Algebra of transition graphs.

• Expansion law
– Relating static laws to dynamic laws.

Laws for equality reasoning on processes.
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Static Laws

• Composition laws
– P |Q = Q|P
– P |(Q|R) = (P |Q)|R
– P |0 = P

• Restriction laws
– P\L = P , if L(P ) ∩ (L ∪ L) = ∅.
– P\K\L = P\(K ∪ L)

– . . .

• Relabelling laws
– P [Id ] = P

– P [f ][f ′] = P [f ′ ◦ f ]

– . . .
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Dynamic Laws

•Monoid laws
– P + Q = Q + P

– P + (Q + R) = (P + Q) + R

– P + P = P

– P + 0 = P

• τ laws
– α.τ.P = α.P

– P + τ.P = τ.P

– α.(P + τ.Q) + α.Q = α.(P + τ.Q)

E1

P

Q

Q
α

τ
α

P

Q
τ

α

E2
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Non-Laws

• τ.P = P
– A = a.A + τ.b.A

– A′ = a.A′ + b.A′

– A may switch to state in which only b is possible.

– A′ always allows a or b.

• α.(P + Q) = α.P + α.Q
– a.(b.P + c.Q) = a.b.P + a.c.Q

– b.P is a-derivative of right side, not capable of c action.

– a-derivative of left side is capable of c action!

– Action sequence a, c may yield deadlock for right side.
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The Expansion Law

• The Expansion Law
– Let P ≡ (P1[f1]| . . . |Pn[fn])\L

– P =
∑{f1(α).(P1[f1]| . . . |P ′

i [fi]| . . . |Pn[fn])\L:

Pi
α→ P ′

i , fi(α) not in L ∪ L}
+

∑{τ.(P1[f1]| . . . |P ′
i [fi]| . . . |P ′

j [fj]| . . . |Pn[fn])\L:

Pi
l1→ P ′

i , Pj
l2→ P ′

j, fi(l1) = fi(l2), i < j}
• Corollary

– Let P ≡ (P1| . . . |Pn)\L
– P =

∑{α.(P1| . . . |P ′
i | . . . |Pn)\L :

Pi
α→ P ′

i , α not in L ∪ L′}
+

∑{τ.(P1| . . . |P ′
i | . . . |P ′

j| . . . Pn)\L :

Pi
l→ P ′

i , Pj
l→ P ′

j, i < j}
• Example

– P1 = a.P ′
1 + b.P ′′

1

– P2 = a.P ′
2 + c.P ′′

2

– (P1|P2)\a = b.(P ′′
1 |P2)\a + c.(P1|P ′′

2 )\a + τ.(P ′
1|P ′

2)\a

Wolfgang Schreiner 33



CCS

Summary

• Algebraic approach to system modeling.
– Main interest: how do processes interact with each other?

– Processes/specifications are described by terms.

– Calculus describes process reactions by term manipulation.

• Central notions:
– Strong bisimilarity: equivalence even for internal actions.

– Observation equivalence: equivalence only for observable

actions.

– Observation congruence: observation equivalence pre-

served under all substitutions.

An implementation must “equal” (be obser-
vationally congruent to) its specification.
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