
LOGICAL MODELS OF SYSTEMS
Theory and Software

Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Logical Models

What is the purpose of logical modeling?

� Precisely describe the problem to be solved.
� Clarification of mind, resolution of ambiguities.
� Specification of program to be developed.

� Software-supported analysis of the problem and its solution.
� Validation of specification.
� Validation/verification of solution.
� Interactive/automatic provers and model checkers.

� Automatic computation of solution respectively simulation of execution.
� Logical solvers (SMT: Satisfiability Modulo Theories).
� Perhaps: rapid prototyping of a later manually written program.

To profit from software, we need computer-understandable models.

1/42

1. Modeling Systems

2. The Temporal Logic of Actions (TLA)

2/42

Computational Systems

Programs are just special cases of “(computational) systems”.

� Computational System
� One or more active components.
� Deterministic or nondeterministic behavior.
� May or may not terminate.

� Safety
� “Nothing bad will ever happen.”
� Partial correctness of programs: for every admissible input, if the program

terminates, its output does not violate the output condition.
� Liveness

� “Something good will eventually happen.”
� Termination of programs: for every input, the program eventually terminates.

General goal is to establish the safety and liveness of computational systems.
3/42

Transition Systems

Any computational system can be modeled as a transition system T = (S, I, R).

� State space S = S1 × . . . × Sn: the set of all possible system states.
� Determined by the possible values of system variables x1, . . . , xn with values

from (finite or infinite) domains S1, . . . , Sn.

� Initial states I ⊆ S: the possible starts of the execution of the system.
� Typically defined by an a predicate Ix on the system variables x1, . . . , xn.

� Transition relation R ⊆ S × S: the possible execution steps.
� Typically defined by a predicate Rx,x′ between the prestate values x and the

poststate values x ′ of the program variables.

Nondeterminism: for some prestate x there may be multiple poststates x ′.

4/42

Example
System C = (S, I, R) with counters x und y which may be independently incremented.

yx

+1 +1

S := Z × Z
I(x, y) :⇔ x = y ∧ y ≥ 0

R(〈x, y〉, 〈x ′, y′〉) :⇔
(x ′ = x + 1 ∧ y′ = y) ∨
(x ′ = x ∧ y′ = y + 1)

� Infinitely many starting states.

[x = 0, y = 0], [x = 1, y = 1], [x = 2, y = 2], . . .
� In each state two possibilities.

[x = 2, y = 3] → [x = 3, y = 3]
→ [x = 2, y = 4]

A nondeterministic system.
5/42

System Runs
Transition system T = (S, I, R).

� System run: (finite or infinite) sequence s0 → s1 → s2 → . . . of states in S.
� s0 is initial: I(s0).
� si → si+1 ist a transition: R(s0, s1).
� If run stops in sn, then sn has no successor: ¬R(sn, s′), for all s′ ∈ S.

System run

s0

Successors of s1s2

s1 Successors of s0

System runs can be understood as paths in a directed graph. 6/42

System Properties

Properties of a transition system can be specified in linear temporal logic (LTL).

� System S satisfies LTL formula P, if each possible run of S satisfies P.
� Action: A

� Classical logic formulas with variables x, y, . . . and x ′, y′,
� First state pair (s0, s1) of run satisfies A with x, y, . . . interpreted in s0 and x ′, y′, . . .

interpreted in s1.

� Always: �P
P P P P P

� Run satisfies property P from every position i on.

� Eventually: ^P
P

� Run satisfies P from at least one position i on.

� Until: P U Q
P P P Q

� Run satisfies property Q from at least one position i on; from all previous
positions j < i it satisfies property P. 7/42

Example
System C = (S, I, R). S := Z × Z

I(x, y) :⇔ x = y ∧ y ≥ 0

R(〈x, y〉, 〈x ′, y′〉) :⇔
(x ′ = x + 1 ∧ y′ = y) ∨
(x ′ = x ∧ y′ = y + 1)

� Safety: �(x ≥ 0 ∧ y ≥ 0)
� Both x and y never become negative.
� System satisfies specification, because every run has this property.

� Liveness: ^x ≥ 1.
� Variable x will eventually have a value greater equal 1.
� System violates specification, because one run does not have this property:

[x = 0, y = 0] → [x = 0, y = 1] → [x = 0, y = 2] → [x = 0, y = 3] → . . .

Liveness properties may be violated by unfair runs; we want to ignore such runs.
8/42

Verifying Safety

We only consider the verification of a safety property.

� M |= �F.
� Verify that formula F is an invariant of system M.

� M = (S, I, R).
� I(s) :⇔ . . .
� R(s, s′) :⇔ R0(s, s′) ∨ R1(s, s′) ∨ . . . ∨ Rn−1(s, s′).

� Proof by induction.
� ∀s. I(s) ⇒ F(s).

• F holds in every initial state.
� ∀s, s′. F(s) ∧ R(s, s′) ⇒ F(s′).

• Each transition preserves F.
• Reduces to a number of subproofs:

F(s) ∧ R0(s, s′) ⇒ F(s′)
. . .

F(s) ∧ Rn−1(s, s′) ⇒ F(s′) 9/42

Fairness

� Infinity: Infinite P :⇔ �^P

� For every position i there is a position j ≥ i at which property P holds.
� Property P is satisfied infinitely often.

� Stability: Stable P :⇔ ^�P

� There is a position i such that at all positions j ≥ i property P holds.
� Property P eventually permanently holds.

� Executability: Enabled A

� Action A describes a transition that is executable in the current state s: there is a
state s′ with R(s, s′) such that A(s, s′).

� Weak Fairness: WF A :⇔ Stable (Enabled A) ⇒ Infinite A

� If A is eventually permanently enabled, then A will (infinitely often) be executed.

� Strong Fairness: SF A :⇔ Infinite (Enabled A) ⇒ Infinite A

� If A is infinitely often enabled, then A will (infinitely often) be executed. 10/42

Example

System C = (S, I, R).
S := Z × Z
I(x, y) :⇔ x = y ∧ y ≥ 0

R(〈x, y〉, 〈x ′, y′〉) :⇔
(x ′ = x + 1 ∧ y′ = y) ∨
(x ′ = x ∧ y′ = y + 1)

� Liveness under the Assumption of Weak Fairness:

(WF x ′ = x + 1 ∧ y′ = y) ⇒ ^x ≥ 1

� If first action is eventually permanently enabled, it is infinitely often executed.
� The action is always enabled (Enabled x ′ = x + 1 ∧ y′ = y ≡ true).
� Thus it is infinitely often executed such that eventually x ≥ 1 holds (^x ≥ 1).

The process scheduler must implement the required fairness properties.
11/42

1. Modeling Systems

2. The Temporal Logic of Actions (TLA)

12/42

The Temporal Logic of Actions (TLA)

� Leslie Lamport (Microsoft Research since 2001).
� ACM Turing Award 2013.

� TLA model of a system:

Ix ∧ �[R]x ∧WFx(A) ∧ . . .

� Initial condition Ix .
� Transition relation [R]x :

• [R]x ≡ (R ∨ x = x′)
• x = x′: stutter step (nothing changes).

� Fairness conditions:
• Conjunction of formulas WFx(A) and/or SFx(A) for actions A.

http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

13/42

http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

Example

X ≡ ∧ x ′ = x + 1
∧ y′ = y

Y ≡ ∧ y′ = y + 1

∧ x ′ = x

S ≡ ∧ (x = 0) ∧ (y = 0)
∧ �[X ∨ Y]〈x,y〉
∧WF〈x,y〉(X) ∧WF〈x,y〉(Y)

[x = 0, x = 0] → [x = 1, y = 0] → [x = 1, y = 0] → [x = 1, y = 1] → . . .

System is described in a structured way by the logical composition of actions.

14/42

TLA+

TLA is not just a logic.

� TLA+: A formal specification language based on TLA.
� Values from the theory of sets (no static type system).

Chris Newcombe et al. How Amazon Web Services Uses Formal Methods.
Communications of the ACM, vol. 58 no. 4, pages 66-73, April 2015.
https://doi.org/10.1145/2699417

� TLA+ Toolbox: an IDE for various TLA tools.
� Writing and syntax checking of TLA+ specifications.
� Pretty printer for generation of LATEXdocuments.
� Translator from the algorithmic language PlusCal to TLA+.
� Simulation and model checking of TLA+-specifications.
� Derivation and checking of TLA+ proofs.

http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html
15/42

https://doi.org/10.1145/2699417
http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html

TLA+ Toolbox

16/42

Example (Plain Text)
––––––––––––––– MODULE Counter –––––––––––––––
EXTENDS Naturals
VARIABLE x,y

I == x = 0 /\ y = 0 (* the initial state condition *)

X == /\ x’ = x+1 (* increment x *)
/\ y’ = y

Y == /\ x’ = x (* increment y *)
/\ y’ = y+1

R == \/ X (* increment x or y *)
\/ Y

var == «x,y» (* the system variables *)

C == I /\ [][R]_var /\ WF_var(X) /\ WF_var(Y) (* the whole specification *)

NotNegative == [](x >= 0 /\ y >= 0) (* some properties *)
BecomeOne == <>(x = 1 /\ y = 1)
===

Spezifikation eines Systems C und einiger Eigenschaften.

17/42

Example (LATEX)

18/42

The TLC Model Checker

Select specification and properties to be checked.
19/42

The TLC Model Checker

If necessary, restrict state space to finite subset.
20/42

The TLC Model Checker

Check the selected properties.
21/42

The TLC Model Checker

In the error case a violating system run is displayed.
22/42

Example

––––––––––––––– MODULE Counter –––––––––––––––
EXTENDS Naturals, TLC
VARIABLE x,y

...

C == I /\ [][R /\ PrintT(«x,y»)]_var /\ WF_var(X) /\ WF_var(Y)

...
===

User output may help to validate the model.

23/42

The TLC Model Checker

The visited states are printed.
24/42

The TLC Model Checker
––––––––––––––– MODULE Counter –––––––––––––––
EXTENDS Naturals
VARIABLE x,y

I == x = 0 /\ y = 0 (* the initial state condition *)

X == /\ x’ = x+1 (* increment x *)
/\ y’ = y

Y == /\ x’ = x (* increment y *)
/\ y’ = y+1

R == \/ X (* increment x or y *)
\/ Y

var == «x,y» (* the system variables *)

C == I /\ [][R]_var /\ WF_var(X) /\ WF_var(Y) (* the whole specification *)
S == (x = 0) /\ [][x’ = x+1]_x /\ WF_x(x’ = x+1) (* another system *)
===

Specification of a more abstract system S. 25/42

The TLC Model Checker

Check whether C refines S (C ⇒ S).
26/42

Der TLC Model Checker

System C is a valid refinement of S.
27/42

The Alternating Bit Protocol (Shared Memory)
Transmission of a sequence of bits between via shared registers.

sAck

rcvd

ReceiverSender

sent

sBit rBit

var sBit ∈ {0, 1}, sAck ∈ {0, 1}, rBit ∈ {0, 1}, sent ∈ Data, rcvd ∈ Data

init sBit = sAck = rBit

loop // Sender
wait sAck = sBit
sent = . . . ; sBit = 1 − sBit

|| loop // Receiver
wait rBit , sBit
rcvd = sent ; rBit = sBit
sAck = rBit

� Liveness property: ∀d ∈ Data . sent = d ∧ sBit , sAck { rcvd = d

� Response: P { Q ≡ �(P⇒ ^Q)
� Request P is always followed by response Q.

28/42

The Alternating Bit Protocol (Shared Memory)

29/42

Model Checking the Protocol (Shared Memory)

No error: protocol satisfies specification.
30/42

The Alternating Bit Protocol (Distributed Memory)

Transmission of a sequence of bits by lossy communication channels.

sAck

rcvd

ReceiverSender

sent

sBit rBit

msgQ

ackQ

� msgQ : transmits messages 〈sBit, sent〉.
� New values after update by sender.

� ackQ : transmits messages rBit .
� New values after update by receiver.

This protocol shall satisfy the same correctness property as the original one.

31/42

The Alternating Bit Protocol (Distributed Memory)

.

The core of the specification.

32/42

The Alternating Bit Protocol (Distributed Memory)

The actions of the specification.

33/42

State Space of the Protocol (Distributed Memory)

Restriction of the state space to a finite subset.
34/42

Model Checking the Protocol (Distributed Memory)

No error: the protocol refines the original one and thus inherits its correctness.
35/42

A Distributed Resource Allocator

Resources

Clients

Server

� A server allocates various resources to a set of clients.

� A client with no resources and no pending requests may request some resources.

� The server may assign some or all of the requested resources.

� Resource requests can be processed in multiple parts; the client may potentially
continue already with some part.

� The client may return a subset of its resources; ultimately it must return all of them.

� Safety: no resource is simultaneously allocated to two clients.

� Liveness: each resource request is eventually satisfied. 36/42

A Distributed Resource Allocator

The method operates with the following variables.

� Server:
� unsat[c]: the resources requested by client c but not yet allocated by the server.
� alloc[c]: the resources requested by client c and allocated by the server.
� sched: the list of clients with pending requests.

• Older requests appear further ahead in the list and are preferably handled.
� Client c:

� requests[c]: the resources requested by client c that it has not yet received.
� holding[c]: the resources held by the client.

� Netzwerk:
� network : the messages pending in the network.

Since messages may be still pending in the network, the server view may be
different from the client view.

37/42

A Distributed Resource Allocator

.

The core of the specification. 38/42

A Distributed Resource Allocator

The receipt of messages.

39/42

A Distributed Resource Allocator

The sending of messages.
40/42

A Distributed Resource Allocator

The correctness properties.

41/42

Model Checking of the Distributed Resource Allocator

The allocator satisfies the correctness property (for 3 clients and 2 resources).
42/42

	Modeling Systems
	The Temporal Logic of Actions (TLA)

