
Object-Oriented Programming in C++ (SS 2023)
Exercise 6: June 22, 2023

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

January 17, 2023

The exercise is to be submitted by the denoted deadline via the submission interface of the
Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the
following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise
and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indenta-
tions are appropriately preserved) and an appropriate font size such that source code
lines to not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution
has unwanted problems or bugs, please document these explicitly (you will get more
credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

1



Exercise 6: Text Statistics with Containers

The goal of this exercise is to write a program that can be called from the command line as

statistics path n

where path denotes the location of a text file and n is a natural number. The program prints those
𝑛 words that occur most often in the file together with the number of their occurrences. A word is
a non-empty sequence of letters; a letter is a character for which the function isalpha() returns
true1. All other characters are not part of a word but separate them; every character is mapped
to its lower-case equivalent2 before further processing.

The implementation of the program shall be based on classes that implement the following
interface:

typedef tuple<string,int> Word;
class WordProcessor
{
public:
virtual ~WordProcessor() {}
virtual void add(string word) = 0;
virtual int size() = 0;
virtual void sort() = 0;
virtual Word word(int i) = 0;

};

where add() enters a new word from the text and size() returns the number of different words
encountered in the text. A call of sort() ensures that the words are sorted according to their
rank (in descending order); any subsequent call of word(𝑖) returns a tuple that contains the word
the number of its occurrences (𝑖 = 0 denotes the word with the largest number of occurrences,
𝑖 = 1 the word with the second-largest number and so on; 𝑖 must be less than the value of
size()). Please note that std::tuple is a class template of the standard library defined in
header <tuple> (lookup its definition).

First, write a class template

template<template<typename V, typename... R> class S>
class SeqWordProcessor: public WordProcessor

{ ... };

that implements the text processor with the help of a sequence container class template S that
can be instantiated with a type V (where R represents any additional optional arguments that the
template may have): the class template maintains a sequence of type S<Word>. If a word is
entered, the sequence is searched for the word; if the word does not occur in the sequence, a new
Word object is created, initialized with the word and occurrence 1 and added to the end of the
sequence; if the word already occurs in the sequence, the number of occurrences is increased by
1http://www.cplusplus.com/reference/cctype/isalpha
2http://www.cplusplus.com/reference/cctype/tolower

2

http://www.cplusplus.com/reference/cctype/isalpha
http://www.cplusplus.com/reference/cctype/tolower


one. A call of sort() sorts the sequence according to the number of occurrences of each word.
Since 𝑆 can be an arbitrary sequence container, rather than sorting the sequence in place, a call of
sort() first generates a vector of the Word values of the sequence that is then sorted according
to the number of occurrences; from this vector, subsequent calls of word() are handled.

Next, implement a class template

template<template<typename K, typename V, typename... R> class A>
class AssocWordProcessor: public WordProcessor

{ ... };

that implements the text processor with the help of an associative container A : the class template
maintains a map of type A<string,Word> that maps a word to the corresponding statistics
information. The implementation proceeds in a similar way as described above except that
instead of a search a map lookup takes place.

The program shall instantiate these templates to create text processors of type

SeqWordProcessor<vector>
SeqWordProcessor<list>
AssocWordProcessor<map>

For each text processor, the program shall read the file, enter the words, print the results and the
number of their occurrences, and how long the total process took3.

Use for your tests the text you can download from

https://www.gutenberg.org/files/21000/21000-0.txt

If the timings are to short go give accurate results, process the text 𝑚 times and divide the time
by 𝑚, for a suitable value of 𝑚. If the timings take much too long, use only a part of this file (and
submit the truncated version of the file as part of the deliverable).

3http://www.cplusplus.com/reference/ctime/clock

3

https://www.gutenberg.org/files/21000/21000-0.txt
http://www.cplusplus.com/reference/ctime/clock

