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Main messages from the Lecture 1:
some solutions of nonlinear partial differential equations form
patterns;
to construct the pattern-forming solutions we have to solve
resonance conditions in integers;
resonance conditions have the form:{

ω1 + ω2 = ω3,
~k1 + ~k2 = ~k3,

or

{
ω1 + ω2 = ω3 + ω4,
~k1 + ~k2 = ~k3 + ~k4,

(1)

with ~kj = (mj ,nj), mj ,nj ∈ Z;

function ω is called dispersion function; ~k is called wavevector;
m,n are called wavenumbers or indexes of Fourier harmonics;
the most frequently met dispersion functions depend on the
modulus of the wave vector k = |~k | = (m2 + n2)1/2, for instance:
ω ∼ (m2 + n2)1/4, (m2 + n2)3/4, (m2 + n2)−1/2, ....
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Analytical solution
General analytical solution does not exist, the problem is equivalent to
the Hilbert’s Tenth problem, it is proven to be unsolvable ⇒ :(

Brute-force numerical solution

{
ω1 + ω2 = ω3 + ω4, ω = (m2 + n2)1/4, m,n ≤ 103

~k1 + ~k2 = ~k3 + ~k4,
(2)

8 integer variables of order 1032 ⇒ :(
2005, Warwick Mathematical School: computations for m,n ≤ 128
took 3 DAYS with Pentium 4.

q-class decomposition
This is specially developed method, which gives a huge computational
advantage.
2007, RISC: computations for m,n ≤ 103 took 15 MINUTES with
Pentium 3.
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The idea of q-class decomposition
Main idea is based on two simple facts.

Fact 1: Main theorem of arithmetics
Every integer has unique presentation as a product of different primes
in some powers, for example:

420 = 22 · 3 · 5 · 7 = 3 · 7 · 22 · 5 = 3 · 4 · 5 · 7

Control question: What is wrong with the last presentation?

Fact 2: Linear independence of algebraic numbers
For rational numbers a,b, c

a
√

3 + b
√

5 = c ⇒ a = b = c = 0.

This statement can be generalized to any finite number of terms and
different roots (see next slide)
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Example

a
√

3 + b
√

5 + c
√

20 + d
√

3 + e
√

27 = g ⇒ (3)


a + d + 3e = 0,
b + 2c = 0,
g = 0

(4)

Control question: Add following terms into (3):

f · 4
√

3, s · 4
√

48

and write additional linear equation into (4).

Elena Kartashova (RISC) Pattern formation, Lecture 2 07.05.2009 5 / 14



Definition of q-class

For a given
c ∈ Z, c 6= 0,1,−1

consider the set of algebraic numbers

Rc = ±k1/c , k ∈ N.

Any such number kc has a unique representation

kc = γq1/c , γ ∈ Z with q = pe1
1 pe2

2 ...p
en
n ,

and p1, ...pn being all different primes and the powers e1, ...en ∈ N are
all smaller than c.
The set of numbers from Rc having the same q is called q-class Clq.
The number q is called class index.
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Principal example: ω = 1/
√

m2 + n2

For any wavevector (m,n) : m,n ∈ N define q-class Clq as following

|(m,n)| =
√

m2 + n2 = γ
√

q, γ, q ∈ N (5)

with square-free q.
Control question: compute q-class of the the wavevector (1,7).
Lemma 1. If three vectors (mi ,ni), i = 1,2,3 give a solution of

1/
√

m2
1 + n2

1 + 1/
√

m2
2 + n2

2 = 1/
√

m2
3 + n2

3 (6)

then they belong to the same class:

∃q ∈ N : (mi ,ni) ∈ Clq, i = 1,2,3.

J Statement of this Lemma is equivalent to irrationality of the square
root of a product of different primes.
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Properties of classes
Lemma 2. The following properties of classes keep true
1) Clq1 ∩ Clq2 6= {0} iff Clq1 = Clq2 (intersection of two classes is not
empty iff these classes coincide);
2) card {Clq} =∞ (there exists an infinite number of classes);
3) Clq 6= ∅ ⇒ card Clq =∞ (every non-empty class consists of
infinite number of elements);
4) Clq 6= ∅ ⇔ q = p1p2 · · · pn where pi ∈ P are different primes such
that pi 6≡ 3 ( mod 4);
5) Clq 6= ∅ & q > 1 ⇒ q = a2 + b2 for some integers a,b ∈ Z (in each
non-empty class, the minimal element has norm q);
6)
Cl1 = {m,n : m2 + n2 = k2,m = a2 − b2,n = 2ab, k = a2 + b2,a > b}
(elements of class Cl1 can be parameterized by two natural
parameters.)
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J Indeed,
1) follows from definition,
2) follows from the fact that the set of primes is infinite,
3) is due to the fact that vectors (m,n) and (sm, sn) have the same
index for arbitrary s ∈ N.
In order to prove 4) and 5) one should use Lagrange theorem:
Natural number N, N = pα1

1 pα2
2 · · · p

αn
n can be presented as a sum of

two squares iff {pi ∈ 4N + 3 ⇒ αi ∈ 2N}.
Last property 6) is known parametrization by Pythagorean numbers.
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Example of 4-term resonance
Dispersion function: ω = (m2 + n2)1/4

Construction of q-classes:
for any wavevector (m,n) : m,n ∈ N define q-class Clq as following

ω = (m2 + n2)1/4 = γq1/4, γ, q ∈ N (7)

with q free of 4th powers.

Solutions from two classes are possible
Case 1: Solutions belong to one class Clq:

γ1
4
√

q + γ2
4
√

q = γ3
4
√

q + γ4
4
√

q (8)

with γ1, γ2, γ3, γ4 ∈ N and q is class index.
Case 2: Solutions belong to two different classes Clq1 ,Clq2 :

γ1
4
√

q1 + γ2
4
√

q2 = γ1
4
√

q1 + γ2
4
√

q2 (9)
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Example of 3-term resonances with empty
q-classes

Dispersion function: ω = (m2 + n2)3/4

Construction of q-classes:
for any wavevector (m,n) : m,n ∈ N define q-class Clq as following

(m2 + n2) = γ4q, γ, q ∈ N (10)

with q free of 4th powers.

ω1 + ω2 = ω3 ⇒ γ3
1q3/4 + γ3

2q3/4 = γ3
3q3/4 ⇒ γ3

1 + γ3
2 = γ3

3

This is particular case of the Last Fermat Theorem, i.e. there is no
integer solutions for arbitrary q: all q-classes are empty.
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Control questions:
Describe Cl1.
Show that Lemma 1 gives only necessary condition of the
existence of a solution (construct an example).
Take 1) ω =

√
m2 + n2 and 2) ω = α

√
m2 + n2 + β with integer α

and β. What will be changed in Lemma 1?
What is the main difference between 3- and 4-term resonances?
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Control questions:
Show that Lemma 1 gives only necessary condition of the
existence of a solution (construct an example).
Take 1) ω =

√
m2 + n2 and 2) ω =

√
m2 + n2 + β with integer

β 6= 0. What will be changed in the class construction and in the
class properties?
The answer: construction is the same but in the case 2) only Cl1
can be non-empty.
What is the main difference between 3- and 4-term resonances?
The answer: in 3-term resonances we always have one q-class,
in 4-term resonances two classes are possible.
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What to read on the implementation of the q-class decomposition
(available at RISC publication list):

2006, E.K., A. Kartashov (C++, 1 class)
2007, E.K., A. Kartashov (C++, 2 classes)
2007, E.K., G. Mayrhofer (Mathematica)
2008, E.K., C. Raab, Ch. Feurer, G. Mayrhofer, W. Schreiner
(Mathematica + on-line implementation)
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