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Comparing Three-class Diagnostic Tests
by Three-way ROC Analysis
STEPHAN DREISEITL, PhD, LUCILA OHNO-MACHADO, MD, PhD,
MICHAEL BINDER, MD

Three-way ROC surfaces are based on a generalization of dichotomous ROC analysis
to three-class diagnostic tests. The discriminatory power of three-class diagnostic tests
is measured by the volume under the ROC surface. This measure can be given a
probabilistic interpretation similar to the equivalence of the c-index to the area under
the ROC curve. This article presents a method to calculate nonparametric estimates
of the variance of the volume under the surface using Mann-Whitney U statistics. As
a simple extension of this result, it is possible to calculate covariance estimates for the
volume under the surface. This allows the statistical comparison of two tests used for

diagnostic tasks with three possible outcomes. The formulas derived are validated on
synthetic data and applied to a three-class data set of pigmented skin lesions. It is
shown that a neural network algorithm trained on clinical data and lesion features
performs better than one trained on only the lesion features. Key words: Receiver
operating characteristic curves; trichotomous ROC analysis. (Med Decis Making 2000;
20:323-331)

Recently, Mossman extended the dichotomous re-
ceiver operating characteristic (ROC) curve analysis
to trichotomous diagnostic tasks. A trichotomous di-
agnostic task is the task of classifying a case as be-
longing to one of three possible classes. Generally,
the classification is based on the outcome of a three-

class diagnostic test.
In the dichotomous case, ROC curves are used to

summarize the discriminatory performance of a test
or rater by plotting sensitivity (true-positive rate) ver-
sus 1 - specificity (false-positive rate) across a spec-
trum of decision thresholds.2 Because it is equivalent
to the Mann-Whitney U-statistic, the area under the
curve (AUC) is a measure of the discriminatory
power of the test.3 The equivalence to U-statistics
allows to draw on the statistical literature to estab-

lish standard deviations and asymptotic normality of
area measurements. 45 5

Given these results, it is possible to statistically de-
termine whether one diagnostic test is better than
another.6-8 A major research focus is the calculation
of correlations in AUC estimates when two tests are

applied to the same subjects.9-12 Accounting for cor-
relations increases a statistical test’s power, making
it easier to detect significant differences in AUC es-
timates.

In this article, we first briefly introduce three-way
ROC curves, and point out the similarities to the di-
chotomous case. We then derive a nonparametric
estimate of variance for the volume under the sur-

face (VUS), the trichotomous analog to the AUC, by
using the equivalence to U-statistics. The resulting
formula is validated by experiments using normally
distributed data. In order to compare three-class di-

agnostic tests, we show how to calculate nonpara-
metric estimates of VUS correlations. We use this

result to statistically test the hypothesis that a ma-
chine-learning algorithm trained on a data set in-
cluding clinical information performs significantly
better than one trained without this information.

Three-way ROCs

The work of Mossman provides a clear presen-
tation of three-way ROCs. For brevity, we summarize
only those points relevant to the present discussion.

Generally, a test result or a case rating provides
an assessment indicating to which of a number of
classes a subject belongs. In the dichotomous case,
there are only two classes, and the test result deter-
mines the location of a subject’s status between

these two classes. If the two classes are represented,
as they usually are, by 0 for a negative and 1 for a
positive condition, a test result’s location x, 0 < ~ <
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FIGURE 1. The three-dimensional estimate triangle that bounds
all probabilities of a three-class diagnostic test outcome The two
points shown are * = (0 7, 0.2, 0 1) and = (0.15, 0.05, 0.8)

1 gives a numerical estimate of the probability that
the subject is positive. Consequently, 1 - x is the
probability that the subject is negative.

In the trichotomous case, a test rates a subject’s
condition with regard to three possible classes C =
1, 2, 3, i.e., the test calculates three class-member-

ship probabilities P(C = 1), P(C = 2), P(C = 3). It is

clear that these three classes cannot be represented
in one dimension (as, e.g., 0, 1, and 2), because a
test result’s placement in one dimension could not
provide the probability interpretation of the dichot-
omous case. It is however, possible to place the
three classes in two dimensions, as corners of a

equilateral triangle. In this case, the coordinates of
a point inside the triangle determine the probability
that a subject belongs to class 1, 2, or 3, respectively.
Only two coordinates are required, as the third is
determined by the condition that the probabilities
must add to one. Nevertheless, it is easier to encode
the corners of the triangle as (1, 0, 0), (0, 1, 0), and
(0, 0, 1), respectively, so that the triangle connects
three corners of the unit cube in three-dimensional

space. Then, each three-dimensional coordinate can
be directly interpreted as a class-membership prob-
ability triple. We identify corner (1, 0, 0) with class

1, (0, 1, 0) with class 2, and (0, 0, 1) with class 3. Note
that since the probabilities have to add to one, the
&dquo;estimate triangle&dquo; lies on a two-dimensional plane
in three-dimensional space; see figure 1 for an il-

lustration.

For a two-class diagnostic test, the points on the
ROC curve are obtained by calculating test sensitiv-
ities and specificities at varying decision thresholds.
Since &dquo;positive&dquo; (T+) and &dquo;negative (T-) are the only
two outcomes for both disease-positive (D+) and dis-
ease-negative (D-) subjects, we know that P(T-ID+)
= 1 - P(T+ID+) and P(T+ID-) = 1 - P(T-ID-). This
means that there is exactly one alternative to sensi-
tivity and specificity, and it makes sense to plot sen-
sitivity versus 1 - specificity. This results in an ROC
curve that runs through the points (0, 0) and (1, 1),
tending towards (0, 1) for tests with increasingly
good discriminatory performance. It is equally plau-

sible, however, to plot sensitivity versus specificity.
The resulting plot extends from (0, 1) to (1, 0), ap-
proaching (1, 1) for good tests. The area under this
curve is the same as the area under a regular ROC
curve.

For a three-class diagnostic test, a subject can be-
long to one of three disease classes (D = 1, 2, 3), and
will be rated as belonging to one of three test-out-
comes classes C = 1, 2, 3. There are two alternatives
to each &dquo;true-class rate&dquo; P(C = kiD = k), k = 1, 2,
3, so that it is possible to plot only P(C = 1JD = 1)
versus P(C = 21D = 2) versus P(C = 31D = 3). This
is the trichotomous version of plotting sensitivity
versus specificity for two-class diagnostic tests.
By varying decision criteria of how to assign esti-

mate triples to classes, one can calculate several
true-class rate triples and plot them in three-dimen-
sional space, forming an ROC surface, the trichoto-
mous analog to an ROC curve. The procedure for
doing so is somewhat elaborate, and is not repeated
here. The details can be found in Mossman’s arti-

cled An example of an ROC surface is shown in fig-
ure 2. The points (1, 0, 0), (0, 1, 0), (0, 0, 1) are on

every ROC surface; connecting them with straight
lines results in the surface corresponding to a test
that cannot discriminate between the three classes.

The VUS of such a test is 1/6.

Having established the analogy between ROC
curves and ROC surfaces, it is interesting to consider
how to interpret the volume under the ROC surface.
The area under the ROC curve is equivalent to the
probability that a randomly chosen D+ subject will
be rated higher than a randomly chosen D- subject.
Mossman established that, similarly, the volume un-
der the ROC surface is equivalent to the probability
that three chosen subjects, one each from classes 1,
2, and 3, will be rated correctly. This begs the ques-
tion of what it means to rate three subjects correctly,
given only their estimate triples. Mossman proposes
two rules; in this work we use the following: Three
estimate triples pi = (pn, pl2J P13)) pz = (P21) P22J P23))

FIGURE 2. An ROC surface. The three axes are the true-class

rates P(C = kind = k), k = 1, 2, 3 A point on the surface repre-
sents a contingency table with true-class rates given by the
point’s coordinates Shown underneath the surface is the tetra-
hedron representing an uninformative ROC surface
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and P3 = (P3lJ p32~ P33)~ from subjects in classes 1, 2,
and 3, respectively, are correctly rated if the sum of
the lengths of the lines joining each rating triple to
the corner associated with its class is smaller than
that of any other length-of-line combination joining
the three triples to the three triangle corners. An
example of a correctly ordered triple is shown in
figure 3.
We define the function

cr( pl, P2) P3) = 1 1 
if (Pll P21 P3) correctly rated

0 else

to denote correctly rated triples. Note that for a non-
discriminatory test, the rating triples PlJ P2) and p3
are randomly distributed in the estimate triangle.
The chances of correctly rating these triples is 1 over
3! = 6, the number of all possible (equally likely)
ways of connecting three points to three corners. As
expected by the equivalence to the volume under
the ROC surface, this probability is the same as the
VUS for a non-discriminatory test.

Standard Deviation of the Volume under
the Surface

For two-class diagnostic tests, it is possible to cal-
culate standard deviations for the area under the

ROC curve by using the equivalence of that measure
to Mann-Whitney U-statistics. In this section, we use
a similar equivalence that holds for the volume un-
der an ROC surface to calculate standard deviations
for this measure. This work proceeds similarly to
the derivation of the standard deviation formula that

can be found in Hanley and McNeil’s article.’
It was already established by Mossman that the

volume under the surface is equivalent to the prob-
ability of correctly rating three subjects, one from
each class. For the following derivation, let X,, i = 1,
... , m be the estimate triples for subjects from class
1, V,, ~ = 1, ... , n the estimate triples for subjects
from class 2, and Zk, k = 1, ..., I the estimate triples
for subjects from class 3. These triples are assumed
to be independent and, within each class, identically
distributed. An unbiased estimator of e = P[cr(X, Y,
Z) = 1], the probability of rating three estimate tri-
ples X, Y, Z from different classes correctly is given
by

Thus, W gives the fraction of all possible three-sub-
ject combinations that are rated correctly. In much
the same way as for two-class diagnostic tests, it is

FIGURE 3 A correctly ordered estimate triple The point * is in
class 1, 0 is in class 2, and is in class 3 The sum of the dashed

lines connecting the points to their corners is shorter than those
of all other connections of these points to the corners.

possible to calculate the variance of W (see the ap-
pendix for details) as

where the new symbols are defined as follows:

the probability of correctly rating three subjects X,,
Y, Zk, and correctly rating X,, Y,, and a different class
3 subject ZK,

The latter symbols have interpretations similar to
~12; with varying combinations of same and chang-
ing elements from the three classes. Estimates for
these quantities can be obtained by counting the
fraction of triples combinations for which the defin-
ing relation holds, e.g.,
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Table 1 ’ Results of Companng Estimated and Observed Standard Deviations for Nine Different Combinations of Sample Sizes
(20, 50, 80) and Dispersions (0.4, 0.6, 0.8)*

*The values given for each combination are the average (over 100 runs) VUS estimate 6, the standard deviation 0-100 of the 100 estimates, and the
estimated standard deviations (Test

An estimator & of the standard deviation cr is then

obtained by using estimators ql2J ..., q3 for ql2J ... )
q3 in equation 1, and taking the square root.
To verify these calculations numerically, we per-

formed a series of experiments with synthetic data.
We generated 20, 50, and 80 estimate triples for each
of the three classes from two-dimensional normal

distributions centered at the corners of the estimate

triangle, with the same degree of dispersion for each
class. We used diagonal covariance matrices with
constant a values of 0.4, 0.6, and 0.8 for a total of
nine combinations of sample sizes and dispersions.
The results of running 100 calculations with each of
the nine combinations are given in table 1. This ta-
ble shows that there is good agreement between the
estimated and measured standard deviations; the
differences are on the order of 2/1, 000 and can be

explained by variance in the samples.
Several other properties of the VUS estimate can

be obtained from the simulation measurements ta-

ble. These observations were first given by Hanley
and McNeil’ for the AUC variance estimate, but hold
for the VUS estimate as well: First, the variance de-
creases with increasing sample sizes, when holding
the sample dispersion constant (seen in each row of
table 1). Second, when increasing sample disper-
sions, i.e., when decreasing VUS, variance estimates
increase (seen in the columns of table 1). Finally,
variances are inversely proportional to the sample
size, so that a fourfold increase in sample size de-
creases the variance by four, and the standard de-
viation by two.

Comparing Volumes under Surfaces

A further important consequence of the equiva-
lence of VUS and Mann-Whitney U-statistics is as-
ymptotic normality.413 Asymptotic normality can be
used to test the hypothesis that two VUS values are
different. As pointed out by Hanley and McNeil9 for

the dichotomous case, it is advantageous to take
possible correlations between volume estimates into
account to increase the power of the test, i.e., to

increase the ability to detect a difference in volume
when it exists.

To be more precise, let X;’, ~ i = 1, m be the
rater 1 estimate triples for subjects from class 1,

X;’, i = 1, ... , m, the same class 1 subjects rated by
rater 2; YJl) j = 1 ..., n the rater 1 estimate triples
for subjects from class 2, YJ2) j 1 ... , n, the same
class 2 subjects rated by rater 2; Z k 1, k = 1, ... , I the
rater 1 estimates for class 3 subjects, and Z2 k, k = 1,
... , 1, the rater 2 estimates for the same class 3 sub-
jects. Furthermore, let

be two Mann-Whitney U-statistics based on the es-
timates of rater 1 and rater 2. Asymptotic normality
implies that for large sample sizes, Wl and W2 will
have normal distributions with parameters 61, Qi 2

and 62, oi respectively. The difference WI - W2 is
then normally distributed with mean 61 &horbar; 62 and
variance U2 + U2 - 2 Cov(Wv W2). When Wl and W2
are obtained from estimate triples of the same sub-
jects (as is the case here), they will not be indepen-
dent and the term Cov(Wv W2) cannot be dropped
from the calculations.
A test for statistical significance of difference is

then to calculate

and to determine whether this value lies outside the

range that can be attributed to chance. In equation
2, r denotes an estimator for the correlation be-
tween Wl and Wv i.e., for
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The covariance of two volume measurements can
be calculated similarly to their variances; the re-
sulting expression is

The definitions of the new symbols are

The probability that both rater 1 and rater 2 cor-
rectly rate three subjects X,, y~ Zk,

the probability that rater 1 correctly rates X,, Y, Zk,
and that rater 2 correctly rates X,, Y,, and a different
class 3 subject ZKJ

The interpretations of the last symbols are similar
to those of the first two. More information about the

derivation of equation 4 can be found in the appen-
dix.

As before, we can give estimators of these quan-
tities by simply counting the number of combina-
tions that satisfy the definitions; one example is

A

Cq12

We can calculate r, the estimator for the correlation
coefficient, by using the estimators for the quantities
cql2,, 01, ..., cq, in equation 4 to obtain an estimator
for Cov(Wv W2). Using equation 3, we then get an
estimate for the correlation coefficient.

Clinical Application
As an application of the method derived above, we

tested whether inclusion of clinical information

helps to diagnose the malignancy of pigmented skin
lesions. We analyzed a dataset containing 518 digital
images of pigmented skin lesions that fell into three
categories: 207 benign, common nevi, 195 morpho-
logically atypical (dysplastic) nevi, and 116 cutaneous
melanomas. Images were taken using the epilumi-
nescence microscopy technique.1415 Digital image
analysis was performed and 45 morphologic fea-
tures, such as area, perimeter, shape factors, and
color distributions, were extracted. Histopathologic
findings for all lesions were used as the &dquo;gold stan-
dard&dquo; of truth. Seven pieces of clinical information
were collected for each lesion: personal and family
history of melanoma, the frequency of common nevi
and the frequency of atypical nevi of the patient, de-
gree of sun damage, skin type, and information
about morphologic changes of the lesion observed
and provided by the patient.
Two neural networks were constructed. One of

the networks used only the features extracted from
the images, while the other used the features and
the clinical information. Both were trained on 260

images that were chosen randomly from the data
set in such a way as to contain 100 instances each
of common and dysplastic nevi, and 60 cutaneous
melanomas. The remaining 258 images were taken
as a test set to measure the performance of the
trained network.

The networks were trained by using Markov-chain
Monte Carlo methods to sample from the posterior
distribution of parameters in a neural network

model, using the algorithms and software developed
by Neal.16 This method incorporates automatic rel-
evance determination (ARD) of inputs, so that it is

possible to include all 45 features in the first model,
and the 45 features and seven clinical information
items in the second model. ARD automatically ad-
justs the contribution of inputs that are not relevant
for calculating the output, so that good perform-
ances can be achieved even in the presence of in-

puts that do not influence the output. In contrast to
standard neural network training such as back-
propagation, this approach does not search for one
set of network weights that minimizes an error
function, but averages over several weight sets ob-
tained by Monte Carlo sampling. We used 20 hidden
neurons in the network and averaged over 2,000 sets
of network weights.
To show that inclusion of clinical information has

a significant influence on the ability to discriminate
between the three lesion types, we set up the hy-
pothesis Ho:91 = 82 that there is no difference in VUS
values. Here, 61 is the VUS of the test using only the
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FIGURE 4. The distribution of the estimate triples on the trian-
gle Class 1 is associated with corner (1, 0, 0), class 2 with (0, 1,
0), class 3 with (0, 0, 1).

extracted image features, and 62 is the VUS of the
test including clinical information. Our goal is then
to discard this hypothesis based on the data.
The results obtained from the neural network al-

gorithm give values of ê1 = 0.556, o-i = 0.041, ê2 =
0.649, &2 = 0.038, and r = 0.555. Using equation 2,
we obtain a z-value of z = 2.49. We can therefore
discard the hypothesis that inclusion of clinical in-
formation does not help in diagnosis with a type I

error probability of p < 0.007. Five different splits of
training and tests sets produced similar results, with
z-values between 2.21 and 3.10 (p-values between
0.014 and 0.001). The distribution of the estimate tri-

ples, as rated by one of the models including clinical
information, is shown in figure 4. It is interesting to
calculate the discrimination between any two of the

three classes, using two-class AUC values based on
the projections of the estimate triples onto the edges
of the estimate triangle. Class 2 can be distinguished
rather well from classes 1 and 3 (AUCs of 0.895 and

0.929, respectively), but it is not as easy to discrimi-
nate between classes 1 and 3 (AUC value 0.768).

Discussion

Two-class diagnostic tests are the tools of choice
for classifying subjects as either normal or abnor-
mal. In many cases, however, abnormality is not a
one-sided alternative to normality, but actually two-
sided. If normality of a condition is defined as an
interval in the middle of a possible range of values,
then there are actually two possible abnormalities:
a value might lie below the normality range, or it

might lie above it (corresponding, e.g., to thyroid hy-
pofunction or hyperfunction). With three-way ROCs,
it is possible to analyze tests for two distinct alter-

natives to abnormality; this is not possible with tra-
ditional dichotomous ROC analysis. As the example
in the previous section shows, three-way ROC anal-
ysis is applicable to any test that distinguishes be-
tween three disease classes, not just those that can
be ordered linearly.

In order to interpret results obtained from three-
way ROC analysis, it is interesting to note what con-
stitutes a &dquo;good&dquo; VUS value. We already know that
the VUS of an uninformative three-class diagnostic
test is 1/6; for an uninformative two-class diagnostic
test, the AUC is 1/2. So what VUS value corresponds
to an AUC value of, for example, 0.8? To answer this
question, we consider dichotomous ROC curves that
change continuously from the uninformative diag-
onal to more informative curves approaching the
point (0, 1). For ROC surfaces, we know that the un-
informative tetrahedron is bounded by the three co-
ordinate axes and three lines connecting the points
(1, 0, 0), (0, 1, 0), and (0, 0, 1). If we continuously
change the three non-axes edges of the uninform-
ative tetrahedron in the same way as dichotomous

ROC curves, we get an ROC surface that tends to-
wards the point (1, 1, 1). Figure 2 shows the unin-
formative tetrahedron and a more informative sym-
metric ROC surface with the same curves on all

three boundary lines. Notice that the VUS grows
slower than the AUC, since the higher dimensions
provide for (relatively) more space in the unit cube
that is not under the surface. The exact correspon-
dence is given by the graph in figure 5. We can see
that an AUC value of 0.8 corresponds to a VUS value
of about 0.55. In our example, the neural network
using clinical information for classifying pigmented
skin lesions performed rather well, since its VUS

value of 0.65 correspond to an AUC value of about
0.85.

We hope that this article can serve as a first step
towards establishing a statistical framework for

three-way ROC analysis. The results derived so far
are applicable only to continuous distributions,

FIGURE 5. A plot of VUS against AUC values. Each point on the
curve corresponds to a (AUC, VUS) pair obtained from using
identical ROC curves as border lines of the ROC surface
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since they do not deal with the ties that would be
obtained from discrete distributions. Furthermore,
no distributional assumptions were made during
the derivation of the formulas. Fitting appropriate
distributions to the estimate data might lead to con-
siderable simplifications of the calculations. Further
research will be needed to alleviate these shortcom-

ings : we will need to consider discrete data, and to
incorporate distributional assumptions into the cal-
culations.

The software used in the calculations is available for download
from ftp://dsg.harvard.edu/pub/ThreewayROC.
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APPENDIX

In this appendix, we show how to derive the variance of W, which is equivalent to the volume under the surface, and
the covariance of two volume measures Wl and WZ. We start with the variance calculation; a similar calculation for the
easier case of two-class diagnostic tests is given by Lehmann.&dquo;

Recall that W is defined as

For simplicity, we omit summation limits in the following. Indices i, I run from 1 to m, j, J from 1 to n, and k, K from
1 to 1. Also, we introduce the shorthand notation U,,k = cr(X&dquo; 1j) Zk). Then, we can write

We know that E(Uyk) = P[cr(X~, 1j) Zk) = 1] = e and thus

Since the X,, X,, Y~ YJ, Zkl ZK are all independent, the covariance of Uk and UIJK is zero if i # I and j # J and k # K. We
are thus dealing with only 23 - 1 = 7 cases where at least one of the index pairs (i, 1 ), ( j, J ), and (k, K ) is not equal. The
sixfold sum above can thus be split into parts, depending on which indices are equal. We can then, using equation 5,
write the sum as

Looking at component 6 of the equality above, we see that the term

is counted mnl times, so this line equals mnlØ(l - 6). Similarly, on line 7, we have E(U,~k, UI) = P(Uyk) UyK = 1) = q12)
occurring mnl(l - 1) times, so this line is equal to mnl(1 - 1)(q12 - 6~) The derivations for the remaining lines are

analogous, down to line 12, which is equal to mnl(m - 1)(n - 1)(q3 - 82). We obtain the result in equation 1 by dividing
by m2nzlZ.
We can proceed in a manner to derive equation 4 for the covariance of two VUS estimates. Using the notation U~k =

cr(X~, Y~ , Z k) and U2 IJK = cr(x,’, y,2, Z K), we can write two Mann-Whitney U-statistics based on estimate triples from raters
1 and 2 as
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We omit summation limits in the following and write

The sixfold sum can be split based on possible combinations of index pairs. Independence of the estimates implies that
Cov(U;k, U2 IJK) = 0 for I # i, J #j, K # k. The remaining combinations of index pairs can be split to yield

The term

in line 13 occurs mnl times in the above sum, so that line 13 is equal to mn~cq~g &horbar; 616z). The remaining lines can be
simplified similarly, using the definitions of CqlZ) cql3, CqZ3) cql, cqzl cq3, respectively. Dividing by mZnzlz gives the result
in equation 4.
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