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Pattern formation
The study of pattern formation deals with the visible, orderly outcomes
of self-organization and the common principle behind similar patterns

Examples

Animal markings (zebra);

Phyllotaxis (the arrangement of the leaves on the stem of a plant,
etc.); (2 pics on-line)

Bacterial colonies growth; (2 pics on-line)

...
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Analysis

find a model PDE of the form

∂ψ

∂t
= N(ψ, t),

where N(ψ, t) is nonlinear differential operator;

search for solution in the form

ψ =
m

∑

j=1

Aj(t) exp i[~kj~x − ωj t], Aj 6= constj ;

reduce an initial nonlinear PDE to a system of nonlinear ODEs
(ordinary differential equations) with variables Aj(t);

study the system of nonlinear ODEs by standard methods of the
theory of dynamical systems and establish the conditions of
regular and chaotic behaviour.

Elena Kartashova (RISC) Pattern formation, Lecture 1 02.04.2009 3 / 21



Example: Swift-Hohenberg Equation

Swift-Hohenberg equation has the form

ψt = εψ − (▽2 + 1)2ψ + g1ψ
2 − ψ3

and describes pattern formation under the convective heat transport
(e.g. growth of algae on the surface of a lake depends on the air
temperature which is changing according to the day time).

Two movies on-line
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Basic Notions about PDEs

Given:

a
∂2ψ

∂x2 + b
∂2ψ

∂x∂y
+ c

∂2ψ

∂y2 + d
∂ψ

∂x
+ e

∂ψ

∂y
+ fψ = g

Definitions:
a,b, c,d ,e, f ,g do not depend on ψ ⇒ linear PDE, example:

∂2ψ

∂x2 + 4ex ∂ψ

∂y
= y2

a,b, c,d ,e, f ,g depend on ψ ⇒ nonlinear PDE, example:

∂2ψ

∂x2 −
∂2ψ

∂y2 = ψ3
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Mathematical Classification of PDEs based on
the FORM of EQUATIONS
Method of Characteristics:

a
∂2ψ

∂x2 + b
∂2ψ

∂x∂y
+ c

∂2ψ

∂y2 = F (x , y , ψ,
∂ψ

∂x
,
∂ψ

∂y
) ⇒

dx
dy

=
b
2a

±
1

2a

√

b2 − 4ac

Three Types of PDEs:

b2 < 4ac, elliptic PDE: ψxx + ψyy = 0

b2 > 4ac, hyperbolic PDE: ψxx − ψyy − xψx = 0

b2 = 4ac, parabolic PDE: ψxx − 2xyψy − ψ = 0

”Bad” example - Tricomi equation: yψxx + ψyy = 0

Each type of PDE demands special type of initial/boundary conditions
for the problem to be well-posed.
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The problem is well-posed if:

the problem has exactly one solution for given initial/boundary
conditions (uniqueness)

a small change in initial/boundary conditions produces a small
change in the solution (stability)

If a problem is not well-posed, its solution is useless for
applications:

there exists more than one solution ⇒ a model has no predictive
power

the solution is unique but small changes in data lead to big
changes in the solution ⇒ a model has no predictive power
(measurement error)

Elena Kartashova (RISC) Pattern formation, Lecture 1 02.04.2009 7 / 21



Common types of boundary/initial conditions:

Dirichlet conditions: the function ψ is given on the boundary.

Neumann conditions: when we specify the normal derivative
(∇ψ)n = ∂ψ

∂x .

Robin (mixed) conditions: a combination of ψ and (∇ψ)n are
given.

Cauchy (initial) conditions: ψ and ∂ψ
∂t are given at some initial

value of t.
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Example of an ill-posed problem:

Let us consider equation

∂2ψ

∂t2 =
∂2ψ

∂x2

with Dirichlet type boundary conditions

ψ(0, t) = 0, ψ(π, t) = 0,

and
ψ(x ,0) = 0, ψ(x , π) = 0.

Looking for solutions of the form ψ(x , t) = X (x)T (t) we find that any
function of the form

ψ(x , t) = A sin(nx) sin(nt)

with integer n gives a solution. Thus there are infinitely many solutions
to the problem! It is ill-posed.
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Equation type + boundary/initial conditions

parabolic: One initial (Cauchy)+ some boundary condition(s).
Heat conduction:

△ψ = α−1ψt ,

α is heat conductivity.

elliptic: Dirichlet/Neumann/Robin.
Laplace equation:

▽2ψ = 0,

(note that operator ▽2ψ is commonly written as △ in pure
mathematical texts)

hyperbolic: One initial (Cauchy) + some boundary condition(s),
Wave equation:

△ψ = c−2ψ2
tt ,

in acoustics c is sound speed, in electrodynamics of varying fields
c is light speed, etc.
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Physical Classification of PDEs, based on
the FORM of SOLUTIONS

Zero Step: Two Types of Variables

Time variable t and
space variable x or ~x = (x1, ..., xn)
PDE is then said to be of (1+1)-order or (1+n)-order .

First Step: Linear PDE, constant coefficients, arbitrary or der

Suppose that this LPDE has a wave-like solution (Fourier harmonic)

ψ(x , t) = A exp i(kx − ωt)

with amplitude A, wave-number k and wave frequency ω.

Elena Kartashova (RISC) Pattern formation, Lecture 1 02.04.2009 11 / 21



How to compute frequency (I)

Let us regard a linear PDE

ψtt + α2ψxxxx = 0

and make some preliminary calculations:

ψt =
∂

∂t
ψ = ω(−i)A exp i(kx − ωt),

ψtt =
∂

∂t
(
∂

∂t
ψ) = (ω(−i))2A exp i(kx − ωt) = −ω2A exp i(kx − ωt),

ψx =
∂

∂x
ψ = kiA exp i(kx − ωt),

........,

ψxxxx =
∂4

∂x4ψ = (ki)4A exp i(kx − ωt) = k4A exp i(kx − ωt).
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How to compute frequency (II)

After substituting these results into initial PDE one gets:

0 = ψtt + α2ψxxxx =

= −ω2A exp i(kx − ωt) + α2k4A exp i(kx − ωt),

which leads to the equation for frequency ω(k) = ±αk2.

Definiton of dispersion

Dependence frequency on wave vector, ω = ω(k), is called dispersion
function (or dispersion relation, or just dispersion) if ω is real-valued
function ω = ω(k) : d2ω/dk2 6= 0 .
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General form of dispersion function

Substitution of ∂t = −iω, ∂x = ik into LPDE
transforms it into a POLYNOMIAL on ω and k .

Examples

ψt + αψx + βψxxx = 0 ⇒ ω(k) = αk − βk3

ψtt + α2φxxxx = 0 ⇒ ω2(k) = α2k4

ψtttt − α2ψxx + β2ψ = 0 ⇒ ω4(k) = α2k2 + β2

Definitions
A linear PDE with wave-like solutions are called evolutionary
dispersive LPDE

A nonlinear PDE with dispersive linear part are called
evolutionary dispersive NPDE.
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Summary

We have constructed a one-to-one correspondence between
linear (evolution) PDE L(ψ) = 0 of arbitrary order allowing a wave
solution ψ(~x) = A exp i(~k~x − ωt) and some polynomial P which
defines dispersion function ω = ω(~k) .

In case of several space variables we have a polynomial
P( ∂∂t ,

∂
∂x1
, ..., ∂

∂xn
) = 0 and condition of non-zero second derivative

of the dispersion function takes a matrix form:

|
∂2ω

∂ki∂kj
| 6= 0.

The number of variables of dispersion function ω coincides with
the number of space variables of the initial PDE.

Given dispersion function allows us to re-construct the
corresponding linear PDE.
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Dispersive and non-dispersive PDEs

Partitioning of all evolutionary PDEs into two classes - dispersive
and non-dispersive is constructed.

This partition is not complementary to a standard mathematical
one:
(a) most hyperbolic PDEs do not have dispersive wave solutions
but hyperbolic equation ψtt − α2 ▽2 ψ + β2ψ = 0 has them.
(b) equation ψtt + α2φxxxx = 0 can not be classified as hyperbolic,
parabolic or elliptic but belongs to the class of dispersive PDEs.

In this way PDEs are able to generate only polynomial dispersion
relations. In some cases a PDE with special initial/boundary
conditions may generate a transcendental dispersion function
such like

ω(k) = k tanhαk .
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Famous evolutionary dispersive NPDEs

Swift-Hohenberg Equation: ψt = εψ − (▽2 + 1)2ψ + g1ψ
2 − ψ3

Boussinesq Equation: ψtt + (ψxx + ψ2)xx = 0

Korteweg-de Vries Equation (KdV): ψt + ψxxx − 6ψψx = 0

Kadomtsev-Petviashvili Equation (KP):
(ψt + 6ψψx + ψxxx )x + 3ψyy = 0

Schrödinger Equation: iψt + ψxx + f (|ψ|)ψ = 0

Zakharov System of Equations:

iψt + ψxx − ψϕ = 0, ϕtt − ϕxx − |ψ|2xx = 0

.... (many!)

Elena Kartashova (RISC) Pattern formation, Lecture 1 02.04.2009 17 / 21



Linear PDE L(φ) = 0: superposition principe

If Aj exp i[~kj~x − ωj t],  = 1,2, ..,n are solutions of L(φ) = 0, than

m
∑

j=1

Aj exp i[~kj~x − ωj t], Aj = constj ,

is also solution of L(φ) = 0 (with notation ω(~kj) = ωj )

Nonlinear PDE L(ψ) + N(ψ) = 0: Generalized Poincare theorem

A nonlinear PDE L(ψ) + N(ψ) = 0 can be linearized if the algebraic
equation

p1ω1 + p2ω2 + · · · + pmωm = 0, p1,p2, ..,pm ∈ Z. (1)

has no solutions . This is algebraic equation .
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Resonance conditions
Equations

p1ω1 + p2ω2 + · · · + pmωm = 0, (2)

p1
~k1 + p2

~k2 + · · · + pm
~km = 0, (3)

with p1,p2, ..,pm ∈ Z. Eqs.(2) are called resonance conditions .

Examples

Usually in applications (biological, medical, physical) we have often
{

ω1 + ω2 = ω3,
~k1 + ~k2 = ~k3,

or

{

ω1 + ω2 = ω3 + ω4,
~k1 + ~k2 = ~k3 + ~k4,

(4)

with ~kj = (mj ,nj), mj ,nj ∈ Z and
ω ∼ (m2 + n2)1/4, (m2 + n2)3/4, m

n2+m2+1 , (m2 + n2)−1/2, ....
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Next lecture
In the next lecture we will learn some general methods for finding
integer solutions of resonance conditions (4).
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Control questions

Is Fourier harmonic A exp i(~k~x − ωt) with constant A a solution of
linear or nonlinear PDE?

Does the superposition principle work for linear or nonlinear
PDEs?

Are the coefficients of evolutionary dispersive nonlinear PDE
constant or not?

Do we need linear or nonlinear PDE to compute dispersion
function?

Is dispersion ω a function of integer or real variables?

How many scalar equations we need to describe resonance
conditions (4)?
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