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Pattern formation
The study of pattern formation deals with the visible, orderly outcomes
of self-organization and the common principle behind similar patterns

v

Examples
@ Animal markings (zebra);
@ Phyllotaxis (the arrangement of the leaves on the stem of a plant,
etc.); (2 pics on-line)
@ Bacterial colonies growth; (2 pics on-line)
9 ..
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Analysis
@ find a model PDE of the form

o _

5 =N,

where N(1,t) is nonlinear differential operator;
@ search for solution in the form

m
P = ZAj(t)eXpi[@)? — wjt], Aj 7& COI’]SJ';
=1

@ reduce an initial nonlinear PDE to a system of nonlinear ODEs

(ordinary differential equations) with variables A;(t);

@ study the system of nonlinear ODEs by standard methods of the
theory of dynamical systems and establish the conditions of
regular and chaotic behaviour.
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Example: Swift-Hohenberg Equation

Swift-Hohenberg equation has the form
Y= ey — (V2 +1)%9 + g19p® — ¢°

and describes pattern formation under the convective heat transport
(e.g. growth of algae on the surface of a lake depends on the air
temperature which is changing according to the day time).

Two movies on-line
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Basic Notions about PDESs

Given:

&y 1) Py O
aaxz baxay‘i‘cayz‘i‘da—x‘i‘e@‘f‘fw—g

Definitions:
@ a,b,c,d,e,f,g do not dependon vy = linear PDE, example:

@ a,b,c,d,e,f,g depend on ¢y = nonlinear PDE, example:

Py P _ s
ox2  9y?
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Mathematical Classification of PDEs based on
the FORM of EQUATIONS

Method of Characteristics:
2 2 2
IR N . o
ox? OX oy oy? ox’ oy

dx = Ej:i\/b2—4ac
2a 2a

dy

( 7 7¢7

Three Types of PDEs:
@ b2 < 4ac, elliptic PDE: 1y + 1yy = 0
@ b2 > 4ac, hyperbolic PDE: ¢y — thyy — Xt)x =0
@ b2 = 4ac, parabolic PDE: ¢y — 2Xyyy — 1 =0
@ "Bad” example - Tricomi equation: yixy + 1yy = 0

Each type of PDE demands special type of initial/boundary conditions
for the problem to be well-posed.
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The problem is well-posed if:

@ the problem has exactly one solution for given initial/boundary
conditions (uniqueness)

@ a small change in initial/boundary conditions produces a small
change in the solution (stability)

If a problem is not well-posed, its solution is useless for
applications:

@ there exists more than one solution = a model has no predictive
power

@ the solution is unique but small changes in data lead to big
changes in the solution = a model has no predictive power
(measurement error)
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Common types of boundary/initial conditions:

@ Dirichlet conditions: the function ) is given on the boundary.

@ Neumann conditions: when we specify the normal derivative
(vw)n = g—;f

@ Robin (mixed) conditions: a combination of ¢y and (V) are
given.

@ Cauchy (initial) conditions: ) and %—% are given at some initial
value of t.
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Example of an ill-posed problem:
Let us consider equation

oy _ 0%
o2 9x2
with Dirichlet type boundary conditions

w(ovt) =0, ¢(7T7t) =0,

and

P(x,0) =0, ¥(x,7)=0.
Looking for solutions of the form ¢(x,t) = X(x)T (t) we find that any
function of the form

P(x,t) = Asin(nx) sin(nt)

with integer n gives a solution. Thus there are infinitely many solutions
to the problem! It is ill-posed.

v
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Equation type + boundaryl/initial conditions

@ parabolic: One initial (Cauchy)+ some boundary condition(s).
Heat conduction:

A¢ = ailqbtv
« is heat conductivity.
@ elliptic: Dirichlet/Neumann/Robin.
Laplace equation:
Vi =0,
(note that operator v7%¢ is commonly written as A in pure
mathematical texts)
@ hyperbolic: One initial (Cauchy) + some boundary condition(s),
Wave equation:
Adp = 2y,
in acoustics ¢ is sound speed, in electrodynamics of varying fields
c is light speed, etc.

v
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Physical Classification of PDEs, based on
the FORM of SOLUTIONS

Zero Step: Two Types of Variables

Time variable t and

space variable x or X = (Xg,...,Xn)

PDE is then said to be of (1+1)-order or (1+n)-order .

First Step: Linear PDE, constant coefficients, arbitrary or der
Suppose that this LPDE has a wave-like solution (Fourier harmonic)

P(X,t) = Aexpi(kx — wt)

with amplitude A, wave-number k and wave frequency w.
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How to compute frequency (1)
Let us regard a linear PDE

Wt + o Pox =0
and make some preliminary calculations:
W= = o(-)AEXpi (ki — wt),
e = S (0 ) = (w(-1)PAexpi(kx — wt) = —PAexpi(ki — wt),

= alar
d . .
Uy = 8—X¢ = kiAexpi(kx — wt),

4
Vxxoxx = %iﬁ = (ki)*Aexpi(kx — wt) = k*Aexpi(kx — wt).
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How to compute frequency (II)
After substituting these results into initial PDE one gets:

0=1n + Oézwxxxx =
= —w?Aexpi(kx — wt) + a?k*Aexpi(kx — wt),

which leads to the equation for frequency w(k) = +ak?.

Definiton of dispersion

Dependence frequency on wave vector, w = w(k), is called dispersion
function (or dispersion relation, or just dispersion) if w is real-valued
function w =w(k): d’w/dk?#0
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General form of dispersion function

Substitution of 0 = —iw, 9dx =ik into LPDE
transforms it into a POLYNOMIAL on w and k.

Examples
Y+ oy + Box =0 = w(k) = ak — gk3
wtt + a2¢xxxx == 0 = UJz(k) == Odzk4
Y — Phex + 0P =0 = wH(k) = oPk? + 32

Definitions

@ A linear PDE with wave-like solutions are called evolutionary
dispersive LPDE

@ A nonlinear PDE with dispersive linear part are called
evolutionary dispersive  NPDE.
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Summary

@ We have constructed a one-to-one correspondence between
linear (evolution) PDE L(v)) = 0 of arbitrary order allowing a wave
solution ¢ (X) = Aexpi(IZZ — wt) and some polynomial P which
defines dispersion function w = w(K) .

@ In case of several space variables we have a polynomial

P(%» 7% - 72) = 0 and condition of non-zero second derivative
of the dispersion function takes a matrix form:
0w
—_— 0.
ke

The number of variables of dispersion function w coincides with
the number of space variables of the initial PDE.

@ Given dispersion function allows us to re-construct the
corresponding linear PDE.
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Dispersive and non-dispersive PDEs

@ Partitioning of all evolutionary PDEs into two classes - dispersive
and non-dispersive is constructed.

@ This partition is not complementary to a standard mathematical
one:
(a) most hyperbolic PDEs do not have dispersive wave solutions
but hyperbolic equation v — o 72 ¢ + 3% = 0 has them.
(b) equation ¥y + aldxxx = O can not be classified as hyperbolic,
parabolic or elliptic but belongs to the class of dispersive PDEs.

@ In this way PDEs are able to generate only polynomial dispersion
relations. In some cases a PDE with special initial/boundary
conditions may generate a transcendental dispersion function
such like

w(k) = k tanh ak.
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Famous evolutionary dispersive NPDEs
@ Swift-Hohenberg Equation: 1y = et — (V2 + 1)%¢ + g1¢% — ¢°
@ Boussinesq Equation: g + (Yxx + ¥?)xx =0
@ Korteweg-de Vries Equation (KdV): ¢ + Yxxx — 691x =0

@ Kadomtsev-Petviashvili Equation (KP):

(wt + 691x + Pxxx )x + 3wyy =0
@ Schrodinger Equation: it + ¢ux + f([¢])yy =0
@ Zakharov System of Equations:

i+ — Y =0, o — pxx — W’)z(x =0

@ .... (many!)
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Linear PDE L(¢) = 0: superposition principe
If A expi[lzji —wjt], J=1,2,..,n are solutions of L(¢) = 0, than

m
ZAJ' eXpi[R})?—wJ't], Aj :constj,
j=1

is also solution of L(¢) = 0 (with notation w(lzj) = wj)

Nonlinear PDE L(v) + N(¢)) = 0: Generalized Poincare theorem

A nonlinear PDE L(¢) + N(z») = 0 can be linearized if the algebraic
equation

Piw1 + Paw2 + - - + Pmwm =0,  P1,P2,..,Pm € Z. (1)

has no solutions . This is algebraic equation .
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Resonance conditions
Equations

P1w1 + Pawz + -+ + Pmwm = 0, (2)
P1Ky + p2ko + - - + Pmkm =0, (3)

with p1,p2, .., Pm € Z. Egs.(2) are called resonance conditions

Examples
Usually in applications (biological, medical, physical) we have often

{wl + w2 = wg, or {wl + w2 = w3 + wa, 4)

@+@=@, @+@=@+&

with k; = (m;,n;), m;,n; € Z and
) R (m2 + r]2)1/4’ (m2 + r]2)3/4’

m 2 | n2y-1/2
e, (m? 4n?)712
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Next lecture

In the next lecture we will learn some general methods for finding
integer solutions of resonance conditions (4).
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Control questions
@ Is Fourier harmonic A expi(kX — wt) with constant A a solution of
linear or nonlinear PDE?

@ Does the superpaosition principle work for linear or nonlinear
PDEs?

@ Are the coefficients of evolutionary dispersive nonlinear PDE
constant or not?

@ Do we need linear or nonlinear PDE to compute dispersion
function?

@ |s dispersion w a function of integer or real variables?

@ How many scalar equations we need to describe resonance
conditions (4)?
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