Formal Methods in Software Development
Exercise 8 (January 30)

Wolfgang Schreiner
Wolfgang.Schreiner @risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course as
a .zip or .tgz file which contains

1. a PDF file with
* a cover page with the course title, your name, Matrikelnummer, and email address,

* a section for each part of the exercise with the requested deliverables and optionally any
explanations or comments you would like to make;

2. the file with the Promela model used in the exercise.

3. the files with the LTL properties (Button “Save As” in the LTL Property Manager).

Email submissions are not accepted.

Exercise 8: Model Checking Leader Election in Spin

We consider a system of n processes po, . . ., pn—1 and n channels cy, ..., c¢,— each of which may
hold m messages. Each process p; can receive a message from channel c; and send a message to
channel ¢ (j+1) mod . 1.€., the processes are organized in a unidirectional “ring”.

From time to time a process may desire to be elected the “leader” of the ring. The core requirement
is that at every moment the ring has at most one leader. We want to ensure this by the following
protocol:

* Every process nondeterministically cycles through the states “idle” (no activity), “waiting”
(having requested to be elected the leader), or “leader” (having been successfully elected the
leader).

* If process p; is in state “idle”, it may switch to state “waiting”, i.e., it may request its election
to the leader. For this purpose, it sends its identifier i to its successor in the ring.

* Every process p; in state “idle” or “waiting” is ready to receive a message from its predecessor;
if such a message (a process identifier) j is received, it is handled as follows:

— If p; is in state “idle”, it forwards j to its successor.
— If p; is in state “waiting”, there are three cases:
1. If j < i, then p; does nothing (i.e., it discards j).

2. If j > i, then p; forwards j to its successor and switches to state “idle” (i.e., it has
lost the election).

3. If j =1, then p; switches to state “leader” (i.e., it has won the election).

* Every process p; in state “leader” does not receive or send any message; however, it may
switch to state “idle” and thus make room for another leader.

By this protocol, if there are multiple processes simultaneously competing for leadership, the one
with the highest process identifier “wins” the election and becomes the leader.

Your tasks are as follows:

1. Implement above model for process number 7 = 4 and m = 2 in Promela'. Take attached file
LeaderElection. txt as the starting point of your implementation.

Make sure that your model does not allow repeated transitions where nothing changes
(i.e., no message is received or sent); such ‘“stuttering steps” unnecessarily violate the
progress properties given below. In particular, the main loop must not contain true ->
skip transitions; if no incoming message is available, the loop must be blocked.

2. Run a simulation for several hundred steps. The simulation must not run into a deadlock.
3. Formulate in Spin LTL the property

Always, if process i is the “leader”, no other process is also leader.

'If model checking with m = 2 is not feasible, choose m = 1 (you may then also try n = 5); generally choose the largest
model that you can reasonably check.

5.

and check it for i = 0 and i = N — 1. Analyze the results in detail and explain whether they
indicate an error in your model or not.

. Formulate in Spin LTL the property

Some process is infinitely often the “leader”.

and check it. Analyze the results in detail and explain whether they indicate an error in your
model or not.

Formulate in Spin LTL the property
Every process is infinitely often not the “leader”.

and check it. Analyze the results in detail and explain whether they indicate an error in your
model or not.

. Formulate in Spin LTL the property

If process i infinitely often wants to become the “leader”, it eventually becomes the
leader.

and check it fori = 0 and i = N — 1. Analyze the results in detail and explain whether they
indicate an error in your model or not.

Change you model such that when a process becomes the leader, it immediately gives up leadership.
Which of above properties do change and which not? Why?

Please use sufficiently many parentheses to make the parsing of formulas unique (do e.g. not write
[1p->qbut write ([]1(p))->(q) or write []((p)->(q))); in particular always use parentheses for
the bodies of temporal formulas ([] (x>0) or <>(x==y)).

Check the output of Spin carefully to determine whether an error has occurred during model checking
(the message error:0 may be even given, if the model checking has been prematurely aborted or
not all of the state space has been explored). If the message “error: max search depth too small”
appears, increase in the “Advanced Parameter Settings” the parameter “Maximum Search Depth”.
If the message “pan: reached -DMEMLIM bound” appears, increase the parameter “physical
memory available”.

The deliverables of the exercise consist of

The completed Promela model.

Screenshots of (the final parts of) the simulation runs.

The LTL properties (PLTL formulas plus definitions of the predicates).
The output of Spin for each model check.

Screenshots of counterexample simulations (if any).

For each model check, an interpretation (did the requested property hold or not and why)?

Some hints/reminders on Promela are given below:

¢ The Promela version of if (E) Cl1 else C2is

if
:: E > C1
11 else -> C2
fi

The Promela version of if (E) Cis
if
:: E > C
11 else -> skip
fi

The Promela version of while (E) Cis
do
:: E > C
11 else -> break
od

In all cases, if you omit the else branch, the process will block in a state that is not allowed
by all the conditions in the other branches.

e The expressionc ? [M 1] istrue if and only if a channel ¢ holds a message of type M. The
statement ¢ ? M will then remove the message. A typical application is in

do/if
:rcond & c? [M] >
c?M;

od/fi;
where in a certain situation only a certain kind of message may be accepted.
* In the attached Promela model, the processes receive identifiers 1,2,3,...1.e.
pl[1]@label

indicates that p(®) is at the position indicated by label (see also the simulations for the
identifiers of the individual processes).

