
Formal Methods in Software Development
Exercise 2 (November 14)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the RISCAL specification (.txt) file(s) used in the exercise.

Email submissions are not accepted.

1



Exercise 2: Deriving and Checking Verification Conditions

As in Exercise 1, we consider the following problem: given an array 𝑎 of 𝑁 > 0 non-negative
integers, find the maximum 𝑚 of 𝑎. We claim that this specification is implemented by the
following program (fragment):

m := 0; i := 0;
while i < N do
{
if a[i] > m then m := a[i];
i := i+1;

}

The goal of this exercise is to verify this claim by deriving and checking the verification conditions
whose validity implies the total correctness of this code with respect to the given specification.

1. Take file maximum.txt which embeds above code in a procedure maximumElement
and equip this procedure with suitable preconditions (requires) and postconditions
(ensures) that formalize above specification (see Exercise 1). Check (for moderately
large values 𝑁 > 0 and 𝑀 ≥ 0) that the procedure satisfies the specification.
Hint: in order to avoid any later confusion between the programvariable 𝑖 andmathematical
variables, it is recommended to name quantified variables different from 𝑖.

2. Select the operation button “Show/Hide Tasks” to display all tasks related to the spec-
ification of the procedure (“Execute specification”, “Validate specification” and “Verify
specification preconditions”). Validate the specification by executing these tasks (run
“Execute specification” with execution option “Silent” switched off to investigate the in-
put/output pairs allowed by your specification; the checks of the other tasks which denote
theorems may be performed with option “Silent” switched on). If a task stays red, i.e., the
corresponding theorem does not hold, you may choose the entry “Show Counterexample”
from the popup menu of the task (which appears with a right-click) to get some further
insight, which may help you to improve your procedure specification.

3. Annotate the loopwith suitable invariants (invariant) and termination term (decreases).
Rerun the procedure check to ensure that your annotations are not too strong (but they may
be still too weak to carry the verification).

Please note that RISCAL treats procedure parameters such as 𝑎 as unmodifiable constants;
thus it is not necessary to specify that its value remains unchanged. Furthermore, all the
knowledge from the precondition of the procedure is automatically inherited and does not
have to specified in the invariants again. However, you have to express in the invariant the
following information:

• Basic knowledge about the range of 𝑖 (. . . ≤ 𝑖 ≤ . . .) and the relationship of 𝑖 and 𝑚
(𝑖 = 0⇒ 𝑚 = . . .).

• Knowledge about 𝑚 which arises from the postcondition (which talks about the
situation after the termination of the loop when the whole array has been processed)

2



and is adequately generalized (to include the situation before/after every loop iteration
when only part of the array has been processed): (𝑖 > 0 ⇒ ∃𝑘 : 0 ≤ 𝑘 < 𝑖 ∧ . . .)
and (∀𝑘 : 0 ≤ 𝑘 < 𝑖 ⇒ . . .).

4. Now demonstrate your knowledge of the Hoare calculus by manually deriving from the
specification and the loop annotations the verification conditions whose validity implies
the total correctness (partial correctness and termination) of the program.

Hint: Hoare calculus reasoning yields five conditions: one for showing that the input
condition of the loop (which is different from the input condition of the program!) implies
the invariant, one for showing that the invariant and the negation of the loop condition
implies the output condition, two for showing that the invariant is preserved and the value
of the termination term is decreased for each of the two possible execution paths in the
loop body, one for showing that the invariant implies that the value of the termination term
does not become negative (if you apply weakest precondition reasoning within the loop
body, only one condition is derived from the loop body).

Do not only give the final verification conditions but show in detail their derivation by
application of Hoare calculus (respectively the predicate transformer calculus). Don’t try
to “guess” the conditions!

Check these conditions with RISCAL, in the style of the verification of the “linear search”
algorithm presented in class. For this purpose, define predicates Input, Output, and
Invariant and a function Termination, where (as shown in class) Invariant and
Termination should be parametrized over the program variables. Then define five
theorems A, T, B1, B2, C describing the verification conditions and check these. Do not
forget to make the preconditions of the procedure also preconditions of these theorems.
If a theorem does not hold, you may select the operation button “Show/Hide Tasks” and
choose the menu entry “Show Counterexample” to get some further insight, which may
help you to correct your annotations.

Also apply the theorem proving capabilities of RISCAL (menu option “Apply Theorem
Prover”) in order to try to verify the validity of these conditions for arbitrary values of 𝑀
and 𝑁 (the embedded SMT solvers are indeed able to automatically prove the verification
conditions of this simple algorithm).

5. Apply the capabilities of RISCAL to automatically generate the necessary verification
conditions from the annotated program. For this select the operation button “Show/Hide
Tasks” to display all tasks related to the implementation (“Verify correctness of result”,
“Verify iteration and recursion”, and “Verify implementation preconditions”) and verify
the implementation by checking these tasks. If your annotations are adequate (strong
enough but not too strong), then all red tasks turn blue (as demonstrated in class for the
“summation” example). Again, if a task stays red, i.e., the corresponding verification
condition does not hold, you may choose the entry “Show Counterexample” to get some
further insight, which may help you to correct your annotations.

Again apply the theorem proving capabilities of RISCAL in order to try to verify the
validity of the verification conditions for arbitrary values of 𝑀 and 𝑁 .

3



The deliverables for this exercise consists of the following items:

1. a nicely formatted copy of the RISCAL specification (included as text, not as screenshots);

2. a detailed manual derivation of the verification conditions;

3. for each check of a verification condition a reasonable selection of the output (included as
text, not as screenshots) with an explicit statement whether the check has succeeded; if a
check failed, give a conjecture why the check failed.

4. screenshots of (part of) the RISCAL software illustrating the automatically generated tasks
after checking (panel “Tasks”, all/most of these tasks should be blue);

5. an explicit statement of whether all tasks could be successfully checked or not for some
fixed values of 𝑀 and 𝑁; if some tasks could not be successfully checked, give screenshots
of the RISCAL software after the task has been selected (indicating in the editor area those
parts of the specification related to the task) and your conjecture why this task failed;

6. an explicit statement of whether all theorems could be successfully proved for arbitrary
values of 𝑀 and 𝑁; if some theorems could not be successfully proved, give screenshots
of the RISCAL software after the task has been selected (indicating in the editor area those
parts of the specification related to the task) and the menu entry “Print Prover Output” has
been selected (displaying the final couple of lines of the output).

If the check of a theorem fails, show the printed counterexample, and give corresponding
explanations. You may also (but need not) attempt to visualize its evaluation (see Exercise 1).

4


