Specifying and Verifying System Properties

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Wolfgang Schreiner

http://www.risc.jku.at

3/65

Motivation

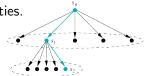
We need a language for specifying system properties.

- A system S is a pair $\langle I, R \rangle$.
 - Initial states I, transition relation R.
 - More intuitive: reachability graph.
 - Starting from an initial state *s*₀, the system runs evolve.
- Consider the reachability graph as an infinite computation tree.
 - Different tree nodes may denote occurrences of the same state.
 - Each occurrence of a state has a unique predecessor in the tree.
 - Every path in this tree is infinite.
 - Every finite run $s_0 \rightarrow \ldots \rightarrow s_n$ is extended to an infinite run

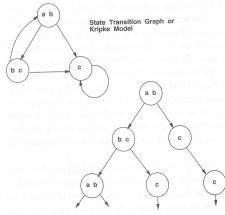
 $s_0 \rightarrow \ldots \rightarrow s_n \rightarrow s_n \rightarrow s_n \rightarrow \ldots$

- Or simply consider the graph as a set of system runs.
 - Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.



Computation Trees versus System Runs



Set of system runs: $[a, b] \rightarrow c \rightarrow c \rightarrow \dots$ $[a, b] \rightarrow [b, c] \rightarrow c \rightarrow \dots$ $[a, b] \rightarrow [b, c] \rightarrow [a, b] \rightarrow \dots$ $[a, b] \rightarrow [b, c] \rightarrow [a, b] \rightarrow \dots$

Unwind State Graph to obtain Infinite Tree

Figure 3.1 Computation trees.

Edmund Clarke et al: "Model Checking", 1999.

Wolfgang Schreiner

http://www.risc.jku.at

Temporal logic is based on classical logic.

- A state formula *F* is evaluated on a state *s*.
 - Any predicate logic formula is a state formula: $p(x), \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1, \forall x : F, \exists x : F.$
 - In propositional temporal logic only propositional logic formulas are state formulas (no quantification):

 $p, \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1.$

• Semantics: $s \models F$ ("*F* holds in state *s*").

Example: semantics of conjunction.

• $(s \models F_0 \land F_1) :\Leftrightarrow (s \models F_0) \land (s \models F_1).$

• " $F_0 \wedge F_1$ holds in s if and only if F_0 holds in s and F_1 holds in s".

Classical logic reasoning on individual states.

Extension of classical logic to reason about multiple states.

- Temporal logic is an instance of modal logic.
 - Logic of "multiple worlds (situations)" that are in some way related.
 - Relationship may e.g. be a temporal one.
 - Amir Pnueli, 1977: temporal logic is suited to system specifications.
 - Many variants, two fundamental classes.
- Branching Time Logic
 - Semantics defined over computation trees.

At each moment, there are multiple possible futures.

Prominent variant: CTL.

Computation tree logic; a propositional branching time logic.

Linear Time Logic

Semantics defined over sets of system runs.

At each moment, there is only one possible future.

- Prominent variant: PLTL.
 - A propositional linear time logic.

We use temporal logic to specify a system property F.

Core question: $S \models F$ ("*F* holds in system *S*").

System $S = \langle I, R \rangle$, temporal logic formula F.

- Branching time logic:
 - $S \models F$: \Leftrightarrow $S, s_0 \models F$, for every initial state s_0 of S.
 - Property F must be evaluated on every pair of system S and initial state s₀.
 - Given a computation tree with root s_0 , F is evaluated on that tree.

CTL formulas are evaluated on computation trees.

We have additional state formulas.

- A state formula *F* is evaluated on state *s* of System *S*.
 - Every (classical) state formula *f* is such a state formula.
 - Let *P* denote a path formula (later).

Evaluated on a path (state sequence) $p = p_0
ightarrow p_1
ightarrow p_2
ightarrow \ldots$

 $R(p_i, p_{i+1})$ for every *i*; p_0 need not be an initial state.

• Then the following are state formulas:

A P ("in every path P"),

E P ("in some path P").

Path quantifiers: A, E.

Semantics: $S, s \models F$ ("F holds in state s of system S").

 $\begin{array}{l} S, s \models f :\Leftrightarrow s \models f. \\ S, s \models \mathbf{A} P :\Leftrightarrow S, p \models P, \text{ for every path } p \text{ of } S \text{ with } p_0 = s. \\ S, s \models \mathbf{E} P :\Leftrightarrow S, p \models P, \text{ for some path } p \text{ of } S \text{ with } p_0 = s. \end{array}$

Path Formulas

We have a class of formulas that are not evaluated over individual states.

- A path formula P is evaluated on a path p of system S.
 - Let *F* and *G* denote state formulas.
 - Then the following are path formulas:

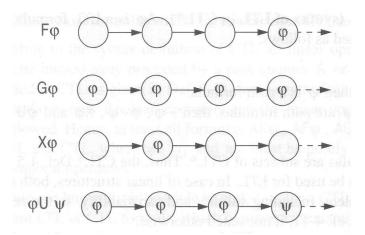
X F ("next time F"), **G** F ("always F"), **F** F ("eventually F"), F **U** G ("F until G").

■ Temporal operators: X, G, F, U.

Semantics: $S, p \models P$ ("P holds in path p of system S").

$$\begin{array}{l} S, p \models \mathbf{X} \ F \ :\Leftrightarrow S, p_1 \models F. \\ S, p \models \mathbf{G} \ F \ :\Leftrightarrow \forall i \in \mathbb{N} : S, p_i \models F. \\ S, p \models \mathbf{F} \ F \ :\Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models F. \\ S, p \models F \ \mathbf{U} \ G \ :\Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models G \land \forall j \in \mathbb{N}_i : S, p_i \models F. \end{array}$$

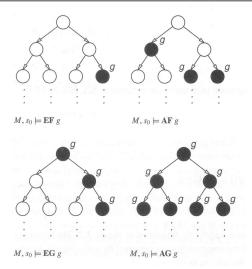
Path Formulas



Thomas Kropf: "Introduction to Formal Hardware Verification", 1999.

http://www.risc.jku.at

Path Quantifiers and Temporal Operators



Edmund Clarke et al: "Model Checking", 1999.

http://www.risc.jku.at

We use temporal logic to specify a system property P.

• Core question: $S \models P$ ("*P* holds in system *S*").

System $S = \langle I, R \rangle$, temporal logic formula P.

- Linear time logic:
 - $S \models P$: \Leftrightarrow $r \models P$, for every run r of S.
 - Property *P* must be evaluated on every run *r* of *S*.
 - Given a computation tree with root s_0 , P is evaluated on every path of that tree originating in s_0 .
 - If *P* holds for every path, *P* holds on *S*.

LTL formulas are evaluated on system runs.

Formulas

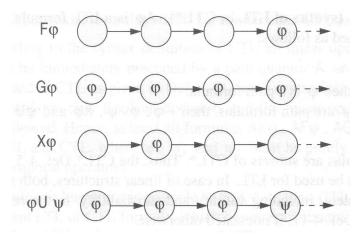
No path quantifiers; all formulas are path formulas.

- Every formula is evaluated on a path *p*.
 - Also every state formula *f* of classical logic (see below).
 - Let *F* and *G* denote formulas.
 - Then also the following are formulas:

X
$$F$$
 ("next time F "), often written $\bigcirc F$,
G F ("always F "), often written $\square F$,
F F ("eventually F "), often written $\diamondsuit F$,
 F **U** G (" F until G ").

Semantics: $p \models P$ ("*P* holds in path *p*").

Formulas



Thomas Kropf: "Introduction to Formal Hardware Verification", 1999.

http://www.risc.jku.at

We use temporal logic to specify a system property P.

• Core question: $S \models P$ ("*P* holds in system *S*").

System $S = \langle I, R \rangle$, temporal logic formula P.

- Branching time logic:
 - $S \models P$: \Leftrightarrow $S, s_0 \models P$, for every initial state s_0 of S.
 - Property *P* must be evaluated on every pair (S, s_0) of system *S* and initial state s_0 .

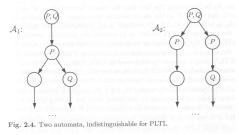
Given a computation tree with root s_0 , P is evaluated on that tree.

Linear time logic:

• $S \models P$: \Leftrightarrow $r \models P$, for every run r of s.

- Property *P* must be evaluated on every run *r* of *S*.
- Given a computation tree with root s_0 , P is evaluated on every path of that tree originating in s_0 .
 - If *P* holds for every path, *P* holds on *S*.

Branching versus Linear Time Logic



B. Berard et al: "Systems and Software Verification", 2001.

• Linear time logic: both systems have the same runs.

Thus every formula has same truth value in both systems.

- **Branching time logic**: the systems have different computation trees.
 - Take formula $AX(EX \ Q \land EX \ \neg Q)$.
 - True for left system, false for right system.

The two variants of temporal logic have different expressive power.

Is one temporal logic variant more expressive than the other one?

- CTL formula: AG(EF F).
 - "In every run, it is at any time still possible that later F will hold".
 - Property cannot be expressed by any LTL logic formula.
- LTL formula: $\Diamond \Box F$ (i.e. **FG** F).
 - "In every run, there is a moment from which on F holds forever.".
 - Naive translation **AFG** *F* is **not** a CTL formula.
 - **G** *F* is a path formula, but **F** expects a state formula!
 - Translation **AFAG** *F* expresses a stronger property (see next page).
 - Property cannot be expressed by any CTL formula.

None of the two variants is strictly more expressive than the other one; no variant can express every system property.

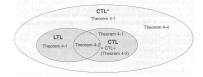
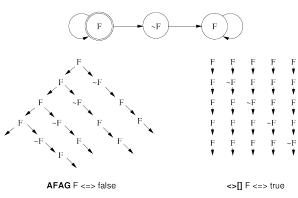


Fig. 4-8. Expressiveness of CTL*, CTL+, CTL and LTL

Thomas Kropf: "Introduction to Formal Hardware Verification", 1999. http://www.risc.iku.at

Proof that **AFAG** *F* (CTL) is different from $\Diamond \Box F$ (LTL).



In every run, there is a moment when it is guarantueed that from now on F holds forever. In every run, there is a moment from which on F holds forever.

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Why using linear time logic (LTL) for system specifications?

- LTL has many advantages:
 - LTL formulas are easier to understand.
 - Reasoning about computation paths, not computation trees.
 - No explicit path quantifiers used.
 - LTL can express most interesting system properties.
 - Invariance, guarantee, response, ... (see later).
 - LTL can express fairness constraints (see later).
 - CTL cannot do this.
 - But CTL can express that a state is reachable (which LTL cannot).
- LTL has also some disadvantages:
 - LTL is strictly less expressive than other specification languages.
 - CTL* or µ-calculus.
 - Asymptotic complexity of model checking is higher.
 - LTL: exponential in size of formula; CTL: linear in size of formula.
 - In practice the number of states dominates the checking time.

In practice, most temporal formulas are instances of particular patterns.

Pattern	Pronounced	Name
$\Box F$	always F	invariance
$\diamond F$	eventually F	guarantee
$\Box \diamond F$	F holds infinitely often	recurrence
$\Diamond \Box F$	eventually F holds permanently	stability
$\Box(F \Rightarrow \Diamond G)$	always, if F holds, then	response
	eventually G holds	
$\Box(F \Rightarrow (G \mathbf{U} H))$	always, if F holds, then	precedence
	G holds until H holds	

Typically, there are at most two levels of nesting of temporal operators.

Examples

- Mutual exclusion: $\Box \neg (pc_1 = C \land pc_2 = C).$
 - Alternatively: $\neg \diamondsuit (pc_1 = C \land pc_2 = C)$.
 - Never both components are simultaneously in the critical region.
- No starvation: $\forall i : \Box(pc_i = W \Rightarrow \Diamond pc_i = R).$
 - Always, if component *i* waits for a response, it eventually receives it.
- No deadlock: $\Box \neg \forall i : pc_i = W$.

Never all components are simultaneously in a wait state W.

- Precedence: $\forall i : \Box (pc_i \neq C \Rightarrow (pc_i \neq C \ U \ lock = i)).$
 - Always, if component *i* is out of the critical region, it stays out until it receives the shared lock variable (which it eventually does).
- Partial correctness: $\Box(pc = L \Rightarrow C)$.
 - Always if the program reaches line *L*, the condition *C* holds.
- Termination: $\forall i : \Diamond (pc_i = T)$.
 - Every component eventually terminates.

Wolfgang Schreiner

http://www.risc.jku.at

Example


```
If event a occurs, then b must occur before c can occur (a run
      \ldots, a, (\neg b)^*, c, \ldots is illegal).
   First idea (wrong)
             a \Rightarrow \dots
          Every run d,... becomes legal.
   Next idea (correct)
            \Box(a \Rightarrow \ldots)
   First attempt (wrong)
            \Box(a \Rightarrow (b \mathbf{U} c))
          Run a, b, \neg b, c, \ldots is illegal.
   Second attempt (better)
             \Box(a \Rightarrow (\neg c \mathbf{U} b))
          Run a, \neg c, \neg c, \neg c, \ldots is illegal.
   Third attempt (correct)
             \Box(a \Rightarrow ((\Box \neg c) \lor (\neg c \mathbf{U} b)))
Specifier has to think in terms of allowed/prohibited sequences.
```

Wolfgang Schreiner

http://www.risc.jku.at

Temporal Rules

Temporal operators obey a number of fairly intuitive rules.

Extraction laws:

$$\Box F \Leftrightarrow F \land \bigcirc \Box F.$$

$$\diamond F \Leftrightarrow F \lor \bigcirc \diamond F.$$

$$F \mathbf{U} G \Leftrightarrow G \lor (F \land \bigcirc (F \mathbf{U} G)).$$

Negation laws:

$$\neg \Box F \Leftrightarrow \Diamond \neg F.$$

$$\neg \Diamond F \Leftrightarrow \Box \neg F.$$

$$\neg (F \ \mathbf{U} \ G) \Leftrightarrow ((\neg G) \ \mathbf{U} \ (\neg F \land \neg G)) \lor \neg \Diamond G.$$

Distributivity laws:

$$\Box(F \land G) \Leftrightarrow (\Box F) \land (\Box G).$$

$$\diamond (F \lor G) \Leftrightarrow (\diamond F) \lor (\diamond G).$$

$$\bullet (F \land G) \mathbf{U} H \Leftrightarrow (F \mathbf{U} H) \land (G \mathbf{U} H).$$

$$\bullet F \mathbf{U} (G \lor H) \Leftrightarrow (F \mathbf{U} G) \lor (F \mathbf{U} H).$$

$$\square \Diamond (F \lor G) \Leftrightarrow (\square \Diamond F) \lor (\square \Diamond G).$$
$$\Rightarrow \bigcirc \square (F \land G) \Leftrightarrow (\Diamond \square F) \land (\Diamond \square G).$$

There exists two important classes of system properties.

- Safety Properties:
 - A safety property is a property such that, if it is violated by a run, it is already violated by some finite prefix of the run.
 - This finite prefix cannot be extended in any way to a complete run satisfying the property.
 - Example: $\Box F$ (with state property F).
 - The violating run F → F → ¬F → ... has the prefix F → F → ¬F that cannot be extended in any way to a run satisfying □F.

Liveness Properties:

- A liveness property is a property such that every finite prefix can be extended to a complete run satisfying this property.
 - Only a complete run itself can violate that property.
- **Example:** $\diamond F$ (with state property F).
 - Any finite prefix p can be extended to a run $p \rightarrow F \rightarrow \ldots$ which satisfies $\Diamond F$.

Wolfgang Schreiner

http://www.risc.jku.at

Not every system property is itself a safety property or a liveness property.

- Example: $P :\Leftrightarrow (\Box A) \land (\diamond B)$ (with state properties A and B)
 - Conjunction of a safety property and a liveness property.
- Take the run $[A, \neg B] \rightarrow [A, \neg B] \rightarrow [A, \neg B] \rightarrow \dots$ violating P.
 - Any prefix [A, ¬B] → ... → [A, ¬B] of this run can be extended to a run [A, ¬B] → ... → [A, ¬B] → [A, B] → [A, B] → ... satisfying P.
 Thus P is not a safety property.
- Take the finite prefix $[\neg A, B]$.
 - This prefix cannot be extended in any way to a run satisfying *P*.
 - Thus P is not a liveness property.

So is the distinction "safety" versus "liveness" really useful?.

The real importance of the distinction is stated by the following theorem.

Theorem:

Every system property *P* is a conjunction $S \wedge L$ of some safety property *S* and some liveness property *L*.

- If *L* is "true", then *P* itself is a safety property.
- If S is "true", then P itself is a liveness property.

Consequence:

- Assume we can decompose *P* into appropriate *S* and *L*.
- For verifying $M \models P$, it then suffices to verify:
 - Safety: $M \models S$.
 - Liveness: $M \models L$.
- Different strategies for verifying safety and liveness properties.

For verification, it is important to decompose a system property in its "safety part" and its "liveness part".

We only consider a special case of a safety property.

- $M \models \Box F$.
 - *F* is a state formula (a formula without temporal operator).
 - Verify that F is an invariant of system M.
- $\bullet M = \langle I, R \rangle.$
 - $= I(s) :\Leftrightarrow \dots$
 - $= R(s,s') :\Leftrightarrow R_0(s,s') \lor R_1(s,s') \lor \ldots \lor R_{n-1}(s,s').$
- Induction Proof.
 - ∀s : I(s) ⇒ F(s).
 Proof that F holds in every initial state.

$$\forall s, s' : F(s) \land R(s, s') \Rightarrow F(s').$$

. . .

- Proof that each transition preserves F.
- Reduces to a number of subproofs:

$$F(s) \land R_0(s,s') \Rightarrow F(s')$$

$$F(s) \wedge R_{n-1}(s,s') \Rightarrow F(s')$$

Example

var
$$x := 0$$
 loop

 p_0 : wait $x = 0$
 ||
 q_0 : wait $x = 1$
 $p_1 : x := x + 1$
 $q_1 : x := x - 1$

 $State = \{p_0, p_1\} \times \{q_0, q_1\} \times \mathbb{Z}.$

$$\begin{split} &I(p,q,x):\Leftrightarrow p=p_0 \wedge q=q_0 \wedge x=0.\\ &R(\langle p,q,x\rangle,\langle p',q',x'\rangle):\Leftrightarrow P_0(\ldots) \vee P_1(\ldots) \vee Q_0(\ldots) \vee Q_1(\ldots). \end{split}$$

 $\begin{array}{l} P_0(\langle p,q,x\rangle,\langle p',q',x'\rangle):\Leftrightarrow p=p_0\wedge x=0\wedge p'=p_1\wedge q'=q\wedge x'=x.\\ P_1(\langle p,q,x\rangle,\langle p',q',x'\rangle):\Leftrightarrow p=p_1\wedge p'=p_0\wedge q'=q\wedge x'=x+1.\\ Q_0(\langle p,q,x\rangle,\langle p',q',x'\rangle):\Leftrightarrow q=q_0\wedge x=1\wedge p'=p\wedge q'=q_1\wedge x'=x.\\ Q_1(\langle p,q,x\rangle,\langle p',q',x'\rangle):\Leftrightarrow q=q_1\wedge p'=p\wedge q'=q_0\wedge x'=x-1. \end{array}$

Prove $\langle I, R \rangle \models \Box (x = 0 \lor x = 1)$.

The induction strategy may not work for proving $\Box F$

- Problem: *F* is not inductive.
 - *F* is too weak to prove the induction step.

 $F(s) \land R(s,s') \Rightarrow F(s').$

- Solution: find stronger invariant *I*.
 - If $I \Rightarrow F$, then $(\Box I) \Rightarrow (\Box F)$.
 - It thus suffices to prove $\Box I$.
- Rationale: *I* may be inductive.
 - If yes, I is strong enough to prove the induction step.

 $I(s) \land R(s,s') \Rightarrow I(s').$

- If not, find a stronger invariant I' and try again.
- Invariant / represents additional knowledge for every proof.
 - Rather than proving $\Box P$, prove $\Box(I \Rightarrow P)$.

The behavior of a system is captured by its strongest invariant.

Example

Prove ⟨I, R⟩ ⊨ □(x = 0 ∨ x = 1).
 Proof attempt fails.
 Prove ⟨I, R⟩ ⊨ □G.
 G :⇔

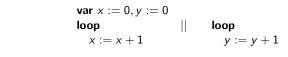
 (x = 0 ∨ x = 1) ∧
 (p = p₁ ⇒ x = 0) ∧
 (q = q₁ ⇒ x = 1).

 Proof works.

•
$$G \Rightarrow (x = 0 \lor x = 1)$$
 obvious.

See the proof presented in class.

Verifying Liveness



$$\begin{aligned} \text{State} &= \mathbb{N} \times \mathbb{N}; \text{Label} = \{p, q\}.\\ I(x, y) &:\Leftrightarrow x = 0 \land y = 0.\\ R(I, \langle x, y \rangle, \langle x', y' \rangle) &:\Leftrightarrow\\ (I &= p \land x' = x + 1 \land y' = y) \lor (I = q \land x' = x \land y' = y + 1). \end{aligned}$$

 $| \langle I, R \rangle \not\models \Diamond x = 1.$

- $[x = 0, y = 0] \to [x = 0, y = 1] \to [x = 0, y = 2] \to \dots$
- This run violates (as the only one) $\Diamond x = 1$.
- Thus the system as a whole does not satisfy $\Diamond x = 1$.

For verifying liveness properties, "unfair" runs have to be ruled out.

When is a particular transition enabled for execution?

- Enabled_R(I, s) : $\Leftrightarrow \exists t : R(I, s, t)$.
 - Labeled transition relation *R*, label *I*, state *s*.
 - Read: "Transition (with label) *I* is enabled in state *s* (w.r.t. *R*)".
- Example (previous slide):

$$\begin{aligned} & \text{Enabled}_{R}(p, \langle x, y \rangle) \\ & \Leftrightarrow \exists x', y' : R(p, \langle x, y \rangle, \langle x', y' \rangle) \\ & \Leftrightarrow \exists x', y' : \\ & (p = p \land x' = x + 1 \land y' = y) \lor \\ & (p = q \land x' = x \land y' = y + 1) \\ & \Leftrightarrow (\exists x', y' : p = p \land x' = x + 1 \land y' = y) \lor \\ & (\exists x', y' : p = q \land x' = x \land y' = y + 1) \\ & \Leftrightarrow \text{true} \lor \text{false} \\ & \Leftrightarrow \text{true.} \end{aligned}$$

Transition p is always enabled.

Weak Fairness

Weak Fairness

- A run $s_0 \xrightarrow{l_0} s_1 \xrightarrow{l_1} s_2 \xrightarrow{l_2} \dots$ is weakly fair to a transition *I*, if
 - if transition *I* is eventually permanently enabled in the run,
 - then transition I is executed infinitely often in the run.

 $(\exists i: \forall j \geq i: Enabled_R(I, s_j)) \Rightarrow (\forall i: \exists j \geq i: I_j = I).$

• The run in the previous example was not weakly fair to transition *p*.

- LTL formulas may explicitly specify weak fairness constraints.
 - Let E_I denote the enabling condition of transition I.
 - Let X₁ denote the predicate "transition 1 is executed".
 - Define $WF_I :\Leftrightarrow (\Diamond \Box E_I) \Rightarrow (\Box \Diamond X_I).$

If *I* is eventually enabled forever, it is executed infinitely often.

Prove
$$\langle I, R \rangle \models (WF_I \Rightarrow P)$$
.

Property P is only proved for runs that are weakly fair to I.

Alternatively, a model may also have weak fairness "built in".

Example

$$\begin{aligned} State &= \mathbb{N} \times \mathbb{N}; Label = \{p, q\}.\\ I(x, y) &:\Leftrightarrow x = 0 \land y = 0.\\ R(I, \langle x, y \rangle, \langle x', y' \rangle) &:\Leftrightarrow\\ (I &= p \land x' = x + 1 \land y' = y) \lor (I = q \land x' = x \land y' = y + 1). \end{aligned}$$

p is never executed.

System satisfies specification if weak fairness is assumed.

Strong Fairness

Strong Fairness

- A run $s_0 \stackrel{l_0}{\rightarrow} s_1 \stackrel{l_1}{\rightarrow} s_2 \stackrel{l_2}{\rightarrow} \dots$ is strongly fair to a transition *I*, if
 - if *I* is infinitely often enabled in the run,
 - then / is also infinitely often executed the run.

 $(\forall i : \exists j \ge i : Enabled_R(I, s_j)) \Rightarrow (\forall i : \exists j \ge i : I_j = I).$

- If r is strongly fair to l, it is also weakly fair to l (but not vice versa).
- LTL formulas may explicitly specify strong fairness constraints.
 - Let E_l denote the enabling condition of transition l.
 - Let X_l denote the predicate "transition l is executed".
 - Define $SF_I :\Leftrightarrow (\Box \diamond E_I) \Rightarrow (\Box \diamond X_I)$.

If *I* is enabled infinitely often, it is executed infinitely often.

Prove
$$\langle I, R \rangle \models (SF_I \Rightarrow P)$$
.

Property P is only proved for runs that are strongly fair to I.

A much stronger requirement to the fairness of a system.

Example

$$var x=0$$

$$loop$$

$$a: x := -x$$

$$b: choose x := 0 [] x := 1$$

$$State := \{a, b\} \times \mathbb{Z}; Label = \{A, B_0, B_1\}.$$

$$I(p, x) :\Leftrightarrow p = a \land x = 0.$$

$$R(I, \langle p, x \rangle, \langle p', x' \rangle) :\Leftrightarrow$$

$$(I = A \land (p = a \land p' = b \land x' = -x)) \lor$$

$$(I = B_0 \land (p = b \land p' = a \land x' = 0)) \lor$$

$$(I = B_1 \land (p = b \land p' = a \land x' = 1)).$$

$$\langle I, R \rangle \models SF_{B_1} \Rightarrow \Diamond x = 1.$$

$$= [a, 0] \xrightarrow{A} [b, 0] \xrightarrow{B_0} [a, 0] \xrightarrow{A} [b, 0] \xrightarrow{B_0} [a, 0] \xrightarrow{A} \dots$$

$$= This (only) violating run is not strongly fair to B_1 (but weakly fair).$$

$$= B_1 \text{ is infinitely often enabled.}$$

$$= B_1 \text{ is never executed.}$$

System satisfies specification if strong fairness is assumed.

Wolfgang Schreiner

http://www.risc.jku.at

In which situations is which notion of fairness appropriate?

- Process just waits to be scheduled for execution.
 - Only CPU time is required.
 - Weak fairness suffices.
- Process waits for resource that may be temporarily blocked.
 - Critical region protected by lock variable (mutex/semaphore).
 - Strong fairness is required.
- Non-deterministic choices are repeatedly made in program.
 - Simultaneous listing on multiple communication channels.
 - Strong fairness is required.

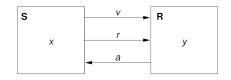
Many other notions or fairness exist.

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

A Bit Transmission Protocol



var
$$x, y$$

var $v := 0, r := 0, a := 0$

 S: loop
 R: loop

 choose $x \in \{0, 1\}$ ||
 1 : wait r = 1

 1 : v, r := x, 1 y, a := v, 1

 2 : wait a = 1 2 : wait r = 0

 r := 0 a := 0

 3 : wait a = 0

Transmit a sequence of bits through a wire.

A (Simplified) Model of the Protocol

State :=
$$PC^2 \times (\mathbb{N}_2)^5$$

$$\begin{split} & l(p,q,x,y,v,r,a):\Leftrightarrow p=q=1 \land x \in \mathbb{N}_2 \land v=r=a=0.\\ & R(\langle p,q,x,y,v,r,a\rangle,\langle p',q',x',y',v',r',a'\rangle):\Leftrightarrow\\ & S1(\ldots) \lor S2(\ldots) \lor S3(\ldots) \lor R1(\ldots) \lor R2(\ldots).\\ & S1(\langle p,q,x,y,v,r,a\rangle,\langle p',q',x',y',v',r',a'\rangle):\Leftrightarrow\\ & p=1 \land p'=2 \land v'=x \land r'=1 \land\\ & q'=q \land x'=x \land y'=y \land a'=a.\\ & S2(\langle p,q,x,y,v,r,a\rangle,\langle p',q',x',y',v',r',a'\rangle):\Leftrightarrow\\ & p=2 \land p'=3 \land a=1 \land r'=0 \land\\ & q'=q \land x'=x \land y'=y \land v'=v \land a'=a.\\ & S3(\langle p,q,x,y,v,r,a\rangle,\langle p',q',x',y',v',r',a'\rangle):\Leftrightarrow\\ & p=3 \land p'=1 \land a=0 \land x' \in \mathbb{N}_2 \land\\ & q'=q \land y'=y \land v'=v \land r'=r \land a'=a.\\ & R1(\langle p,q,x,y,v,r,a\rangle,\langle p',q',x',y',v',r',a'\rangle):\Leftrightarrow\\ & q=1 \land q'=2 \land r=1 \land y'=v \land a'=1 \land\\ & p'=p \land x'=x \land v'=v \land r'=r.\\ & R2(\langle p,q,x,y,v,r,a\rangle,\langle p',q',x',y',v',r',a'\rangle):\Leftrightarrow\\ & q=2 \land q'=1 \land r=0 \land a'=0 \land\\ & p'=p \land x'=x \land y'=y \land v'=v \land r'=r.\\ & R2(\langle p,q,x,y,v,r,a\rangle,\langle p',q',x',y',v',r',a'\rangle):\Leftrightarrow\\ & q=2 \land q'=1 \land r=0 \land a'=0 \land\\ & p'=p \land x'=x \land y'=y \land v'=v \land r'=r.\\ & \end{pmatrix}$$

A Verification Task

$$\langle I, R \rangle \models \Box (q = 2 \Rightarrow y = x)$$

$$Invariant(p,\ldots) \Rightarrow (q = 2 \Rightarrow y = x)$$

$$I(p,...) \Rightarrow Invariant(p,...)$$

$$R(\langle p,...\rangle, \langle p',...\rangle) \land Invariant(p,...) \Rightarrow Invariant(p',...)$$

$$\begin{aligned} & \text{Invariant}(p, q, x, y, v, r, a) :\Leftrightarrow \\ & (p = 1 \lor p = 2 \lor p = 3) \land (q = 1 \lor q = 2) \land \\ & (x = 0 \lor x = 1) \land (v = 0 \lor v = 1) \land (r = 0 \lor r = 1) \land (a = 0 \lor a = 1) \land \\ & (p = 1 \Rightarrow q = 1 \land r = 0 \land a = 0) \land \\ & (p = 2 \Rightarrow r = 1 \land v = x) \land \\ & (p = 3 \Rightarrow r = 0) \land \\ & (q = 1 \Rightarrow a = 0) \land \\ & (q = 2 \Rightarrow (p = 2 \lor p = 3) \land a = 1 \land y = x) \end{aligned}$$

The invariant captures the essence of the protocol.

newcontext "protocol";

p: NAT; q: NAT; x: NAT; y: NAT; v: NAT; r: NAT; a: NAT; pO: NAT; qO: NAT; xO: NAT; yO: NAT; vO: NAT; rO: NAT; aO: NAT; S1: BOOLEAN = p = 1 AND p0 = 2 AND v0 = x AND r0 = 1 AND q0 = q AND x0 = x AND y0 = y AND a0 = a;S2: BOOLEAN = p = 2 AND p0 = 3 AND a = 1 AND r0 = 0 AND q0 = q AND x0 = x AND y0 = y AND v0 = v AND a0 = a;S3: BOOLEAN = p = 3 AND p0 = 1 AND a = 0 AND (x0 = 0 OR x0 = 1) AND q0 = q AND v0 = v AND v0 = v AND r0 = r AND a0 = a;R1: BOOLEAN = q = 1 AND q0 = 2 AND r = 1 AND v0 = v AND a0 = 1 AND pO = p AND xO = x AND vO = v AND rO = rR2: BOOLEAN = q = 2 AND q0 = 1 AND r = 0 AND a0 = 0 AND pO = p AND xO = x AND yO = y AND vO = v AND rO = r;


```
Init: BOOLEAN =
  p = 1 AND q = 1 AND (x = 0 \text{ OR } x = 1) AND
  v = 0 AND r = 0 AND a = 0:
Step: BOOLEAN =
  S1 OR S2 OR S3 OR R1 OR R2;
Invariant: (NAT, NAT, NAT, NAT, NAT, NAT, NAT, NAT)->BOOLEAN =
  LAMBDA(p, q, x, y, v, r, a: NAT):
     (p = 1 \text{ OR } p = 2 \text{ OR } p = 3) \text{ AND}
     (q = 1 \text{ OR } q = 2) \text{ AND}
     (x = 0 \text{ OR } x = 1) \text{ AND}
     (v = 0 \text{ OR } v = 1) \text{ AND}
     (r = 0 \text{ OR } r = 1) \text{ AND}
     (a = 0 \text{ OR } a = 1) \text{ AND}
     (p = 1 \Rightarrow q = 1 AND r = 0 AND a = 0) AND
     (p = 2 \Rightarrow r = 1 AND v = x) AND
     (p = 3 => r = 0) AND
     (q = 1 => a = 0) AND
     (q = 2 \Rightarrow (p = 2 \text{ OR } p = 3) \text{ AND } a = 1 \text{ AND } y = x);
```



```
Property: BOOLEAN =
  q = 2 => y = x;
VCO: FORMULA
  Invariant(p, q, x, y, v, r, a) => Property;
VC1: FORMULA
  Init => Invariant(p, q, x, y, v, r, a);
VC2: FORMULA
  Step AND Invariant(p, q, x, y, v, r, a) =>
    Invariant(p0, q0, x0, y0, v0, r0, a0);
```

The Proofs


```
[vd2]: expand Invariant, Property in m2v
  [rle]: proved (CVCL)
```

```
[wd2]: expand Init, Invariant in nra
[ip1]: proved(CVCL)
```

```
[xd2]: expand Step, Invariant, S1, S2, S3, R1, R2
[6ss]: proved(CVCL)
```

More instructive: proof attempts with wrong or too weak invariants (see demonstration).

A Client/Server System

$$\begin{array}{l} \textbf{Client system } C_i = \langle IC_i, RC_i \rangle.\\ state := PC \times \mathbb{N}_2 \times \mathbb{N}_2.\\ Int := \{R_i, S_i, C_i\}.\\ IC_i(pc, request, answer) :\Leftrightarrow\\ pc = R \wedge request = 0 \wedge answer = 0.\\ RC_i(I, \langle pc, request, answer \rangle),\\ \langle pc', request', answer' \rangle) :\Leftrightarrow\\ (I = R_i \wedge pc = R \wedge request = 0 \wedge\\ pc' = S \wedge request' = 1 \wedge answer' = answer) \vee\\ (I = S_i \wedge pc = S \wedge answer \neq 0 \wedge\\ pc' = C \wedge request' = request \wedge answer' = 0) \vee\\ (I = C_i \wedge pc = C \wedge request = 0 \wedge\\ pc' = R \wedge request' = 1 \wedge answer' = answer) \vee \end{array}$$

Client(ident):
 param ident
begin
 loop
 ...
R: sendRequest()
S: receiveAnswer()
C: // critical region
 ...
 sendRequest()
endLoop
end Client

Server system
$$S = \langle IS, RS \rangle$$
.
State := $(\mathbb{N}_3)^3 \times (\{1,2\} \rightarrow \mathbb{N}_2)^2$.
Int := $\{D1, D2, F, A1, A2, W\}$.

$$\begin{array}{l} IS(given, waiting, sender, rbuffer, sbuffer) : \Leftrightarrow \\ given = waiting = sender = 0 \land \\ rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0 \end{array}$$

$$\begin{split} &RS(I, \langle given, waiting, sender, rbuffer, sbuffer \rangle, \\ & \langle given', waiting', sender', rbuffer', sbuffer' \rangle) :\Leftrightarrow \\ & \exists i \in \{1,2\} : \\ & (I = D_i \land sender = 0 \land rbuffer(i) \neq 0 \land \\ & sender' = i \land rbuffer'(i) = 0 \land \\ & U(given, waiting, sbuffer) \land \\ & \forall j \in \{1,2\} \backslash \{i\} : U_j(rbuffer)) \lor \\ & \ddots \end{split}$$

$$U(x_1,\ldots,x_n):\Leftrightarrow x'_1 = x_1 \land \ldots \land x'_n = x_n.$$

$$U_j(x_1,\ldots,x_n):\Leftrightarrow x'_1(j) = x_1(j) \land \ldots \land x'_n(j) = x_n(j).$$

Server: local given, waiting, sender begin given := 0; waiting := 0 loop D: sender := receiveRequest() if sender = given then if waiting = 0 then F: given := 0 else A1: given := waiting; waiting := 0 sendAnswer(given) endif elsif given = 0 then A2: given := sender sendAnswer(given) else W: waiting := sender endif endloop end Server

Wolfgang Schreiner

http://www.risc.jku.at

A Client/Server System (Contd'2)

$$(I = F \land sender \neq 0 \land sender = given \land waiting = 0 \land given' = 0 \land sender' = 0 \land U(waiting, rbuffer, sbuffer)) \lor$$

$$(I = A1 \land sender \neq 0 \land sbuffer(waiting) = 0 \land sender = given \land waiting \neq 0 \land given' = waiting \land waiting' = 0 \land sbuffer'(waiting) = 1 \land sender' = 0 \land U(rbuffer) \land \forall j \in \{1,2\} \backslash \{waiting\} : U_j(sbuffer)) \lor$$

$$\begin{array}{l} (I = A2 \land sender \neq 0 \land sbuffer(sender) = 0 \land \\ sender \neq given \land given = 0 \land \\ given' = sender \land \\ sbuffer'(sender) = 1 \land sender' = 0 \land \\ U(waiting, rbuffer) \land \\ \forall j \in \{1,2\} \backslash \{sender\} : U_j(sbuffer)) \lor \end{array}$$

```
Server:
  local given, waiting, sender
begin
  given := 0; waiting := 0
  loop
D: sender := receiveRequest()
    if sender = given then
      if waiting = 0 then
F:
        given := 0
      else
A1:
        given := waiting;
        waiting := 0
        sendAnswer(given)
      endif
    elsif given = 0 then
A2:
      given := sender
      sendAnswer(given)
    else
W:
      waiting := sender
    endif
  endloop
end Server
```


$$(I = W \land sender \neq 0 \land sender \neq given \land given \neq 0 \land$$

waiting' := sender \land sender' = 0 \land
 $U(given, rbuffer, sbuffer)) \lor$

 $\exists i \in \{1,2\}$:

$$(I = REQ_i \land rbuffer'(i) = 1 \land U(given, waiting, sender, sbuffer) \land \forall j \in \{1, 2\} \backslash \{i\} : U_j(rbuffer)) \lor$$

$$(I = \overline{ANS_i} \land sbuffer(i) \neq 0 \land sbuffer'(i) = 0 \land U(given, waiting, sender, rbuffer) \land \forall j \in \{1, 2\} \backslash \{i\} : U_j(sbuffer)).$$

```
Server:
  local given, waiting, sender
begin
  given := 0; waiting := 0
  loop
D: sender := receiveRequest()
    if sender = given then
      if waiting = 0 then
F:
        given := 0
      else
A1:
        given := waiting;
        waiting := 0
        sendAnswer(given)
      endif
    elsif given = 0 then
A2:
      given := sender
      sendAnswer(given)
    else
W:
      waiting := sender
    endif
  endloop
end Server
```


$$\textit{State} := (\{1,2\} \rightarrow \textit{PC}) \times (\{1,2\} \rightarrow \mathbb{N}_2)^2 \times (\mathbb{N}_3)^2 \times (\{1,2\} \rightarrow \mathbb{N}_2)^2$$

 $I(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) : \Leftrightarrow \forall i \in \{1, 2\} : IC(pc_i, request_i, answer_i) \land IS(given, waiting, sender, rbuffer, sbuffer)$

$$\begin{split} & R(\langle pc, request, answer, given, waiting, sender, rbuffer, sbuffer \rangle, \\ & \langle pc', request', answer', given', waiting', sender', rbuffer', sbuffer' \rangle) : \Leftrightarrow \\ & (\exists i \in \{1,2\} : RC_{local}(\langle pc_i, request_i, answer_i \rangle, \langle pc'_i, request'_i, answer'_i \rangle) \land \\ & \langle given, waiting, sender, rbuffer, sbuffer \rangle = \\ & \langle given', waiting', sender', rbuffer', sbuffer' \rangle) \lor \\ & (RS_{local}(\langle given, waiting, sender, rbuffer', sbuffer', sbuffer' \rangle) \land \\ & \forall i \in \{1,2\} : \langle pc_i, request_i, answer_i \rangle = \langle pc'_i, request'_i, answer'_i \rangle) \lor \\ & (\exists i \in \{1,2\} : External(i, \langle request_i, answer_i, rbuffer, sbuffer \rangle, \\ & & \langle request'_i, answer'_i, rbuffer', sbuffer' \rangle) \land \\ & pc = pc' \land \langle sender, waiting, given \rangle = \langle sender', waiting', given' \rangle) \end{split}$$

$$\langle I, R \rangle \models \Box \neg (pc_1 = C \land pc_2 = C)$$

```
Invariant(pc, request, answer, sender, given, waiting, rbuffer, sbuffer) : \Leftrightarrow
  \forall i \in \{1, 2\}:
    (pc(i) = C \lor sbuffer(i) = 1 \lor answer(i) = 1 \Rightarrow
       given = i \land
       \forall i : i \neq i \Rightarrow pc(i) \neq C \land sbuffer(i) = 0 \land answer(i) = 0) \land
    (pc(i) = R \Rightarrow
        sbuffer(i) = 0 \land answer(i) = 0 \land
        (i = given \Leftrightarrow request(i) = 1 \lor rbuffer(i) = 1 \lor sender = i) \land
        (request(i) = 0 \lor rbuffer(i) = 0)) \land
    (pc(i) = S \Rightarrow
        (sbuffer(i) = 1 \lor answer(i) = 1 \Rightarrow
           request(i) = 0 \land rbuffer(i) = 0 \land sender \neq i) \land
        (i \neq given \Rightarrow
           request(i) = 0 \lor rbuffer(i) = 0)) \land
    (pc(i) = C \Rightarrow
        request(i) = 0 \land rbuffer(i) = 0 \land sender \neq i \land
        sbuffer(i) = 0 \land answer(i) = 0) \land
```

The Verification Task (Contd)


```
. . .
(sender = 0 \land (request(i) = 1 \lor rbuffer(i) = 1) \Rightarrow
   sbuffer(i) = 0 \land answer(i) = 0) \land
(sender = i \Rightarrow
   (waiting \neq i) \land
   (sender = given \land pc(i) = R \Rightarrow
      request(i) = 0 \land rbuffer(i) = 0) \land
   (pc(i) = S \land i \neq given \Rightarrow
      request(i) = 0 \land rbuffer(i) = 0) \land
   (pc(i) = S \land i = given \Rightarrow
      request(i) = 0 \lor rbuffer(i) = 0)) \land
(waiting = i \Rightarrow
  given \neq i \land pc_i = S \land request_i = 0 \land rbuffer(i) = 0 \land
   sbuffer_i = 0 \land answer(i) = 0) \land
(sbuffer(i) = 1 \Rightarrow
   answer(i) = 0 \land request(i) = 0 \land rbuffer(i) = 0)
```

As usual, the invariant has been elaborated in the course of the proof.


```
newcontext "clientServer";
```

```
Index: TYPE = SUBTYPE(LAMBDA(x:INT): x=1 OR x=2);
Index0: TYPE = SUBTYPE(LAMBDA(x:INT): x=0 OR x=1 OR x=2);
```

```
% program counter type
PCBASE: TYPE;
R: PCBASE; S: PCBASE; C: PCBASE;
PC: TYPE = SUBTYPE(LAMBDA(x:PCBASE): x=R OR x=S OR x=C);
PCs: AXIOM R /= S AND R /= C AND S /= C:
```

```
% client states
pc: Index->PC; pc0: Index->PC;
request: Index->BOOLEAN; request0: Index->BOOLEAN;
answer: Index->BOOLEAN; answer0: Index->BOOLEAN;
```

```
% server state
given: Index0; given0: Index0;
waiting: Index0; waiting0: Index0;
sender: Index0; sender0: Index0;
rbuffer: Index -> BOOLEAN; rbuffer0: Index -> BOOLEAN;
sbuffer: Index -> BOOLEAN; sbuffer0: Index -> BOOLEAN;
```

The RISC ProofNavigator Theory (Contd)

% -----% initial state condition % ------

IC: (PC, BOOLEAN, BOOLEAN) -> BOOLEAN =
LAMBDA(pc: PC, request: BOOLEAN, answer: BOOLEAN):
pc = R AND (request <=> FALSE) AND (answer <=> FALSE);

```
IS: (Index0, Index0, Index->BOOLEAN, Index->BOOLEAN) -> BOOLEAN =
LAMBDA(given: Index0, waiting: Index0, sender: Index0,
        rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN):
    given = 0 AND waiting = 0 AND sender = 0 AND
    (FORALL(i:Index): (rbuffer(i)<=>FALSE) AND (sbuffer(i)<=>FALSE));
```

```
Initial: BOOLEAN =
  (FORALL(i:Index): IC(pc(i), request(i), answer(i))) AND
  IS(given, waiting, sender, rbuffer, sbuffer);
```

The RISC ProofNavigator Theory (Contd'2)

pc0 = R AND (request0 <=> TRUE) AND (answer0 <=> answer));

RS: (Index0, Index0, Index->BOOLEAN, Index->BOOLEAN, Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN = LAMBDA(given: Index0, waiting: Index0, sender: Index0, rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN, given0: Index0, waiting0: Index0, sender0: Index0, rbuffer0: Index->BOOLEAN, sbuffer0: Index->BOOLEAN):

The RISC ProofNavigator Theory (Contd'3)

```
(EXISTS(i:Index):
        sender = 0 AND (rbuffer(i) <=> TRUE) AND
        sender0 = i AND (rbuffer0(i) <=> FALSE) AND
        given = given0 AND waiting = waiting0 AND sbuffer = sbuffer0 AND
         (FORALL(j:Index): j /= i => (rbuffer(j) <=> rbuffer0(j)))) OR
      (sender /= 0 AND sender = given AND waiting = 0 AND
        given0 = 0 AND sender0 = 0 AND
        waiting = waiting0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR
      (sender /= 0 AND)
        sender = given AND waiting /= 0 AND
         (sbuffer(waiting) <=> FALSE) AND
        given0 = waiting AND waiting0 = 0 AND
         (sbuffer0(waiting) <=>TRUE) AND (sender0 = 0) AND
         (rbuffer = rbuffer0) AND
         (FORALL(j:Index): j /= waiting => (sbuffer(j) <=> sbuffer0(j))) OR
      (sender /= 0 AND (sbuffer(sender) <=> FALSE) AND
        sender /= given AND given = 0 AND given0 = sender AND
         (sbuffer0(sender)<=>TRUE) AND sender0=0 AND
         (waiting=waiting0) AND (rbuffer=rbuffer0) AND
         (FORALL(j:Index): j/= sender => (sbuffer(j) <=> sbuffer0(j))) OR
      (sender /= 0 AND sender /= given AND given /= 0 AND
        waiting0 = sender AND sender0 = 0 AND
        given = given0 AND rbuffer = rbuffer0 AND sbuffer = sbuffer0);
Wolfgang Schreiner
                                  http://www.risc.iku.at
```

```
57/65
```

The RISC ProofNavigator Theory (Contd'4)


```
External: (Index. PC. BOOLEAN, BOOLEAN, PC. BOOLEAN, BOOLEAN,
           Index0, Index0, Index0, Index->BOOLEAN, Index->BOOLEAN,
           Index0, Index0, Index->BOOLEAN, Index->BOOLEAN)->BOOLEAN =
  LAMBDA(i:Index.
         pc: PC, request: BOOLEAN, answer: BOOLEAN,
         pc0: PC, request0: BOOLEAN, answer0: BOOLEAN,
         given: Index0, waiting: Index0, sender: Index0,
           rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN,
         given0: Index0, waiting0: Index0, sender0: Index0,
           rbuffer0: Index->BOOLEAN, sbuffer0: Index->BOOLEAN):
    ((request <=> TRUE) AND
       pc0 = pc AND (request0 <=> FALSE) AND (answer0 <=> answer) AND
         (rbuffer0(i) <=> TRUE) AND given = given0 AND waiting = waiting0
         AND sender = sender() AND shuffer = shuffer() AND
         (FORALL (j: Index): j /= i => (rbuffer(j) <=> rbuffer0(j)))) OR
    (pc0 = pc AND (request0 <=> request) AND (answer0 <=> TRUE) AND
     (sbuffer(i) <=> TRUE) AND (sbuffer0(i) <=> FALSE) AND
     given = given0 AND waiting = waiting0 AND sender = sender0 AND
     rbuffer = rbuffer0 AND
     (FORALL (j: Index): j /= i => (sbuffer(j) <=> sbuffer0(j))));
```

The RISC ProofNavigator Theory (Contd'5)


```
Next: BOOLEAN =
  ((EXISTS (i: Index):
      RC(pc(i), request(i), answer(i),
         pc0(i), request0(i), answer0(i)) AND
     (FORALL (j: Index): j /= i =>
        pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND
        (answer(j) <=> answer0(j)))) AND
    given = given0 AND waiting = waiting0 AND sender = sender0 AND
    rbuffer = rbuffer0 AND sbuffer = sbuffer0) OR
  (RS(given, waiting, sender, rbuffer, sbuffer,
      given0, waiting0, sender0, rbuffer0, sbuffer0) AND
   (FORALL (j:Index): pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND
      (answer(j) <=> answer0(j)))) OR
  (EXISTS (i: Index):
    External(i, pc(i), request(i), answer(i),
                pc0(i), request0(i), answer0(i),
             given, waiting, sender, rbuffer, sbuffer,
             given0, waiting0, sender0, rbuffer0, sbuffer0) AND
   (FORALL (j: Index): j /= i =>
      pc(j) = pc0(j) AND (request(j) <=> request0(j)) AND
      (answer(j) <=> answer0(j))));
```

The RISC ProofNavigator Theory (Contd'6)

```
%
 invariant
        _____
Invariant: (Index->PC, Index->BOOLEAN, Index->BOOLEAN,
           IndexO, IndexO, IndexO, Index->BOOLEAN, Index->BOOLEAN) -> BOOLEAN =
 LAMBDA(pc: Index->PC, request: Index->BOOLEAN, answer: Index->BOOLEAN,
        given: Index0, waiting: Index0, sender: Index0,
        rbuffer: Index->BOOLEAN, sbuffer: Index->BOOLEAN):
   FORALL (i: Index):
     (pc(i) = C OR (sbuffer(i) <=> TRUE) OR (answer(i) <=> TRUE) =>
        given = i AND
        (FORALL (j: Index): j /= i =>
           pc(j) /= C AND
           (sbuffer(j) <=> FALSE) AND (answer(j) <=> FALSE))) AND
     (pc(i) = R =>
        (sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE) AND
        (i /= given =>
          (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i)
          AND
        (i = given =>
          (request(i) <=> TRUE) OR (rbuffer(i) <=> TRUE) OR sender = i) AND
        ((request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND
```

The RISC ProofNavigator Theory (Contd'7)

```
(pc(i) = S =>
  ((sbuffer(i) <=> TRUE) OR (answer(i) <=> TRUE) =>
     (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i)
     AND
  (i /= given =>
     (request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND
(pc(i) = C =>
 (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE) AND sender /= i AND
 (sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE)) AND
(sender = 0 AND ((request(i) <=> TRUE) OR (rbuffer(i) <=> TRUE)) =>
 (sbuffer(i) <=> FALSE) AND (answer(i) <=> FALSE)) AND
(sender = i = >
 (sender = given AND pc(i) = R =>
     (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE)) AND
 waiting /= i AND
 (pc(i) = S AND i /= given =>
     (request(i) <=> FALSE) AND (rbuffer(i) <=> FALSE)) AND
 (pc(i) = S AND i = given =>
     (request(i) <=> FALSE) OR (rbuffer(i) <=> FALSE))) AND
```

The RISC ProofNavigator Theory (Contd'8)


```
(waiting = i =>
  given /= i AND
  pc(waiting) = S AND
  (request(waiting) <=> FALSE) AND (rbuffer(waiting) <=> FALSE) AND
  (sbuffer(waiting) <=> FALSE) AND (answer(waiting) <=> FALSE)) AND
((sbuffer(i) <=> TRUE) =>
  (answer(i) <=> FALSE) AND (request(i) <=> FALSE) AND
  (rbuffer(i) <=> FALSE));
```


The RISC ProofNavigator Theory (Contd'9)

```
-----
 mutual exclusion proof
 -----
MutEx: FORMULA
 Invariant(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) =>
 NOT(pc(1) = C AND pc(2) = C);
 _____
 invariance proof
%
 _____
Inv1: FORMULA
 Initial =>
  Invariant(pc, request, answer, given, waiting, sender, rbuffer, sbuffer);
Inv2: FORMULA
 Invariant(pc, request, answer, given, waiting, sender,
  rbuffer, sbuffer) AND Next =>
 Invariant(pc0, request0, answer0, given0, waiting0, sender0,
  rbuffer0. sbuffer0):
```

The Proofs: MutEx and Inv1

[z3f]: expand Invariant, IC, IS [nhn]: scatter [znj]: auto [n1u]: proved (CVCL)

Single application of autostar.

Wolfgang Schreiner

[oas]: expand Initial, Invariant, IC, IS [eii]: scatter [5ul]: auto [uvj]: proved (CVCL) [6ul]: auto [2u6]: proved (CVCL) [avl]: auto [cuv]: proved (CVCL) [bvl]: auto [jt1]: proved (CVCL) [cvl]: auto [gsb]: proved (CVCL) [dvl]: auto [xrx]: proved (CVCL) [evl]: auto [5an]: proved (CVCL) [fvl]: auto [fqd]: proved (CVCL) [gvl]: auto [mpz]: proved (CVCL) [hvl]: proved (CVCL) [h5h]: auto [p3z]: proved (CVCL) [i5h]: auto [gib]: proved (CVCL) [j5h]: auto [4vi]: proved (CVCL) [k5h]: auto [ucq]: proved (CVCL) [15h]: auto [lpx]: proved (CVCL) http://www.risc.iku.at

[m5h]: proved (CVCL) [n5h]: proved (CVCL) [o5h]: proved (CVCL) [p5h]: proved (CVCL) [q5h]: proved (CVCL) [a5i]: proved (CVCL) [r5i]: proved (CVCL) [s5i]: proved (CVCL) [t5i]: proved (CVCL) [u5i]: auto [1br]: proved (CVCL) [v5i]: auto [roy]: proved (CVCL) [w5i]: auto [i26]: proved (CVCL) [x5i]: proved (CVCL) [v5i]: auto [wuo]: proved (CVCL) [z5i]: auto [nbw]: proved (CVCL) [z5j]: auto [nbn]: proved (CVCL) [15i]: auto [eou]: proved (CVCL) [25i]: proved (CVCL) [35j]: proved (CVCL) [45j]: proved (CVCL) [55j]: proved (CVCL) [65i]: proved (CVCL)

The Proofs: Inv2


```
[pas]: scatter
                                               [st6]: scatter
                                                                                 [h4b]: scatter
   [1bh]: expand Next
                                                 [aef]: expand Invariant
                                                                                   [tob]: expand Invariant
      [pzi]: split bfv
                                                    [cwk]: scatter
                                                                                     [h1g]: scatter
        [leh]: decompose
                                                     [g16]: auto
                                                                                       [t4i]: auto
          [pkr]: expand RS
                                                        [seg]: proved (CVCL)
                                                                                         [hpk]: proved (CVCL)
            [lpn]: split 5xv
                                                      ... (21 times)
                                                                                       ... (36 times)
              [pt6]: expand Invariant
                                                     [w16]: proved (CVCL)[neh]: scatter
                [lcw]: scatter
                                                     ... (12 times)
                                                                            [4oc]: expand RC
                                               [tt6]: scatter
                                                                              [nuh]: split nwz
                  [puh]: auto
                    [143]: proved (CVCL)
                                                 [hp6]: expand Invariant
                                                                                 [4ge]: scatter
                  ... (20 times)
                                                   [twl]: scatter
                                                                                   [ney]: expand Invariant
                  [tuh]: proved (CVCL)
                                                                                     [45d]: scatter
                                                     [hqv]: auto
                  ... (15 times)
                                                       [tbj]: proved (CVCL)
                                                                                       [nui]: auto
              [gt6]: expand Invariant
                                                     ... (27 times)
                                                                                         [4wr]: proved (CVCL)
                [sng]: scatter
                                                     [nqv]: proved (CVCL)
                                                                                       ... (36 times)
                  [avi]: auto
                                                     ... (6 times)
                                                                                     [5ge]: scatter
                    [cct]: proved (CVCL)[meh]: scatter
                                                                                       [ups]: expand Invariant
                  ... (26 times)
                                           [w3z]: expand External
                                                                                         [o6e]: scatter
                                                                                           [ez5]: auto
                  [gvi]: proved (CVCL)
                                             [3rk]: split lhe
                  ... (6 times)
                                               [g4b]: scatter
                                                                                             [5tu]: proved (CVCL)
              [rt6]: scatter
                                                 [mdh]: expand Invariant
                                                                                           ... (36 times)
                                                   [wzf]: scatter
                [zyk]: expand Invariant
                                                                                     [6ge]: scatter
                  [rvi]: scatter
                                                     [3vs]: auto
                                                                                       [21m]: expand Invariant
                    [zgj]: auto
                                                       [gsh]: proved (CVCL)
                                                                                         [66f]: scatter
                      [rhd]: proved (CVCL)
                                                     ... (36 times)
                                                                                           [24u]: auto
                    ... (31 times)
                                                                                             [6qx]: proved (CVCL)
                    [2f3]: proved (CVCL)
                                                                                           ... (36 times)
                    ... (1 times)
```

Ten main branches each requiring only single application of autostar.

Wolfgang Schreiner

http://www.risc.jku.at