
Specifying and Verifying Programs (Part 2)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/46



1. Programs as State Relations

2. The RISC ProgramExplorer

Wolfgang Schreiner http://www.risc.jku.at 2/46



Specification by State Predicates

Hoare calculus and predicate transformers use state predicates.

Formulas that talk about a single (pre/post-)state.
In such a formula, a reference x means “the value of program variable
x in the given state”.

Relationship between pre/post-state is not directly expressible.

Requires uninterpreted mathematical constants.

{x = a}x := x + 1{x = a + 1}
Unchanged variables have to be explicitly specified.

{x = a ∧ y = b}x := x + 1{x = a + 1 ∧ y = b}
The semantics of a command c is only implicitly specified.

Specifications depend on auxiliary state conditions P,Q.

{P}c{Q}
wp(c ,Q) = P

Let us turn our focus from individual states to pairs of states.

Wolfgang Schreiner http://www.risc.jku.at 3/46



Specification by State Relations

We introduce formulas that denote state relations.

Talk about a pair of states (the pre-state and the post-state).
old x : “the value of program variable x in the pre-state”.
var x : “the value of program variable x in the post-state”.

We introduce the logical judgment c : [F ]x ,...

If the execution of c terminates normally, the resulting post-state is
related to the pre-state as described by F .
Every variable y not listed in the set of variables x , . . . has the same
value in the pre-state and in the post-state.

c : F ∧ var y = old y ∧ . . .

x := x + 1 : [var x = old x + 1]x

x := x + 1 : var x = old x + 1 ∧ var y = old y ∧ var z = old z ∧ . . .

We will discuss the termination of commands later.

Wolfgang Schreiner http://www.risc.jku.at 4/46



State Relation Rules

c : [F ]xs y 6∈ xs

c : [F ∧ var y = old y ]xs∪{y}

skip : [true]∅ abort : [true]∅ x = e : [var x = e′]{x}

c1 : [F1]
xs c2 : [F2]

xs

c1; c2 : [∃ys : F1[ys/var xs] ∧ F2[ys/old xs]]xs

c : [F ]xs

if e then c : [if e′ then F else var xs = old xs]xs

c1 : [F1]
xs c2 : [F2]

xs

if e then c1 else c2 : [if e
′ then F1 else F2]

xs

c : [F ]xs

` ∀xs, ys, zs : I [xs/old xs, ys/var xs] ∧ e[ys/xs] ∧ F [ys/old xs, zs/var xs]⇒
I [xs/old xs, zs/var xs]

while e do {I , t} c : [¬e′′ ∧ (I [old xs/var xs]⇒ I )]xs

if e then F1 else F2 :⇔ (e ⇒ F1) ∧ (¬e ⇒ F2)
e′ := e[old xs/xs], e′′ := e[var xs/xs] (for all program variables xs)

Wolfgang Schreiner http://www.risc.jku.at 5/46



Example

c1 = y := y + 1;
c2 = x := x + y

c1 : [var y = old y + 1]y

c2 : [var x = old x + old y ]x

c1 : [var y = old y + 1 ∧ var x = old x ]x,y

c2 : [var x = old x + old y ∧ var y = old y ]x,y

c1; c2 : [∃x0, y0 :
y0 = old y + 1 ∧ x0 = old x ∧
var x = x0 + y0 ∧ var y = y0]x,y

c1; c2 : [var x = old x + old y + 1 ∧ var y = old y + 1]x,y

Mechanical translation and logical simplification.

Wolfgang Schreiner http://www.risc.jku.at 6/46



Loops

c : [F ]xs

` ∀xs, ys, zs : I [xs/old xs, ys/var xs] ∧ e[ys/xs] ∧ F [ys/old xs, zs/var xs]⇒
I [xs/old xs, zs/var xs]

while e do {I , t} c : [¬e′′ ∧ (I [old xs/var xs]⇒ I )]xs

e

I ′′

I ′ F

x y z

w = while i < n do {I , t} (s := s + i ; i := i + 1)
I ⇔ 0 ≤ var i ≤ old n ∧ var s =

∑var i−1
j=0 j

(s := s + i ; i := i + 1) : [var s = old s + old i ∧ var i = old i + 1]s,i

` ∀sx , sy , sz , ix , iy , iz :
(0 ≤ iy ≤ old n ∧ sy =

∑iy−1

j=0 j) ∧ iy < old n ∧ (sz = sy + iy ∧ iz = iy + 1)⇒
0 ≤ iz ≤ old n ∧ sz =

∑iz−1
j=0 j

w : [¬(var i < var n) ∧ (0 ≤ old i ≤ old n ∧ old s =
∑old i−1

j=0 j ⇒ I )]s,i

The loop relation is derived from the invariant (not the loop body); we
have to prove the preservation of the loop invariant.

Wolfgang Schreiner http://www.risc.jku.at 7/46



Example

c =
if n < 0

s := −1
else

s := 0
i := 0
while i < n do {I,t}

s := s + i
i := i + 1

I ⇔ 0 ≤ var i ≤ old n ∧ var s =
∑var i−1

j=0 j
t = old n − old i

c : [if old n < 0
then var i = old i ∧ var s = −1
else var i = old n ∧ var s =

∑old n−1
j=0 j)]s,i

Let us calculate this “semantic essence” of the program.

Wolfgang Schreiner http://www.risc.jku.at 8/46



Example

c = if n < 0 then s := −1 else b
b = (s := 0; i := 0;w)
w = while i < n do {I , t} (s := s + i ; i = i + 1)

s := 0 : [var s = 0]s

s := 0 : [var s = 0 ∧ var i = old i ]s,i

i := 0 : [var i = 0]i

i := 0 : [var i = 0 ∧ var s = old s]s,i

s := 0; i := 0 : [∃s0, i0 : s0 = 0 ∧ i0 = old i ∧ var i = 0 ∧ var s = s0]
s,i

s := 0; i := 0 : [var s = 0 ∧ var i = 0]s,i

w : [¬(var i < var n) ∧ (0 ≤ old i ≤ old n ∧ old s =
∑old i−1

j=0 j ⇒ I )]s,i

w : [var i ≥ old n ∧ (0 ≤ old i ≤ old n ∧ old s =
∑old i−1

j=0 j ⇒ I )]s,i

Wolfgang Schreiner http://www.risc.jku.at 9/46



Example

c = if n < 0 then s := −1 else b
b = (s := 0; i := 0;w)
w = while i < n do {I , t} (s := s + i ; i = i + 1)

s := 0; i := 0 : [var s = 0 ∧ var i = 0]s,i

w : [var i ≥ old n ∧ (0 ≤ old i ≤ old n ∧ old s =
∑old i−1

j=0 j ⇒ I )]s,i

b : [∃s0, i0 : s0 = 0 ∧ i0 = 0∧
var i ≥ old n ∧ (0 ≤ i0 ≤ old n ∧ s0 =

∑i0−1
j=0 j ⇒ I )]s,i

b : [∃s0, i0 : s0 = 0 ∧ i0 = 0 ∧
var i ≥ old n ∧ (0 ≤ old n⇒ I )]s,i

b : [var i ≥ old n ∧
(0 ≤ old n⇒ 0 ≤ var i ≤ old n ∧ var s =

∑var i−1
j=0 j)]s,i

b : [var i ≥ old n ∧
(0 ≤ old n⇒ var i = old n ∧ var s =

∑old n−1
j=0 j)]s,i

Wolfgang Schreiner http://www.risc.jku.at 10/46



Example

c = if n < 0 then s := −1 else b
b = (s := 0; i := 0;w)
w = while i < n do {I , t} (s := s + i ; i = i + 1)

s := −1 : [var s = −1]s
s := −1 : [var i = old i ∧ var s = −1]s,i

b : [var i ≥ old n ∧
(0 ≤ old n⇒ var i = old n ∧ var s =

∑old n−1
j=0 j)]s,i

c : [if old n < 0
then var i = old i ∧ var s = −1
else var i ≥ old n ∧

(0 ≤ old n⇒ var i = old n ∧ var s =
∑old n−1

j=0 j)]s,i

c : [if old n < 0
then var i = old i ∧ var s = −1
else var i = old n ∧ var s =

∑old n−1
j=0 j)]s,i

Wolfgang Schreiner http://www.risc.jku.at 11/46



Partial Correctness

Specification (xs,P,Q)

Set of program variables xs (which may be modified).
Precondition P (a formula with “old xs” but no “var xs”).
Postcondition Q (a formula with both “old xs” and “var xs”).

Partial correctness of implementation c

1. Derive c : [F ]xs .
2. Prove F ⇒ (P ⇒ Q)

Or: P ⇒ (F ⇒ Q)
Or: (P ∧ F )⇒ Q

Verification of partial correctness leads to the proof of an implication.

Wolfgang Schreiner http://www.risc.jku.at 12/46



Relationship to Other Calculi

Let all state conditions refer via “old xs” to program variables xs.

Hoare Calculus

For proving {P}c{Q},
it suffices to derive c : [F ]xs

and prove P ∧ F ⇒ Q[var xs/old xs].

Predicate Transformers

Assume we can derive c : [F ]xs .
If c does not contain loops, then

wp(c ,Q) = ∀xs : F [xs/var xs] ⇒ Q[xs/old xs]
sp(c ,P) = ∃xs : P[xs/old xs] ∧ F [xs/old xs, old xs/var xs]

If c contains loops, the result is still a valid pre/post-condition but
not necessarily the weakest/strongest one.

A generalization of the previously presented calculi.

Wolfgang Schreiner http://www.risc.jku.at 13/46



Termination

We introduce a judgment c ↓ T .

State condition T (a formula with “old xs” but no “var xs”).

Starting with a pre-state that satisfies condition T the execution of
command c terminates.

Total correctness of implementation c .

Specification (xs,P,Q).

Derive c ↓ T .
Prove P ⇒ T .

Also verification of termination leads to the proof of an implication.

Wolfgang Schreiner http://www.risc.jku.at 14/46



Termination Condition Rules

skip ↓ true abort ↓ true x := e ↓ true

c1 ↓ T1 c2 ↓ T2

c1; c2 ↓ T1 ∧ wp(c1,T2)

c ↓ T
if e then c ↓ e′ ⇒ T

c1 ↓ T1 c2 ↓ T2

if e then c1 else c2 ↓ if e′ then T1 else T2

c : [F ]xs c ↓ T
` ∀xs, ys, zs :

I [xs/old xs, ys/var xs] ∧ e[ys/xs] ∧ F [ys/old xs, zs/var xs] ∧ t[ys/old xs] ≥ 0⇒
T [ys/old xs] ∧ 0 ≤ t[zs/old xs] < t[ys/old xs]

while e do {I , t} c ↓ t ≥ 0

In every iteration of a loop, the loop body must terminate and the
termination term must decrease (but not become negative).

Wolfgang Schreiner http://www.risc.jku.at 15/46



Example

c =
if n < 0

s := −1
else

s := 0
i := 0
while i < n do {I,t}

s := s + i
i := i + 1

I ⇔ 0 ≤ var i ≤ old n ∧ var s =
∑var i−1

j=0 j ]
t = old n − old i

c ↓ if old n < 0 then true else . . .
c ↓ if old n < 0 then true else old n ≥ 0
c ↓ true

We still have to prove the constraint on the loop iteration.

Wolfgang Schreiner http://www.risc.jku.at 16/46



Example

s := s + i ; i := i + 1 ↓ true
∀sx , sy , sz , ix , iy , iz :

(0 ≤ iy ≤ old n ∧ sy =
∑iy−1

j=0 j) ∧
iy < old n ∧
(sz = sy + iy ∧ iz = iy + 1) ∧
old n − iy ≥ 0 ⇒

true ∧
0 ≤ old n − iz < old n − iy

Also this constraint is simple to prove.

Wolfgang Schreiner http://www.risc.jku.at 17/46



Abortion

Also abortion can be ruled out by proving side conditions in the usual way.

Wolfgang Schreiner. Computer-Assisted Program Reasoning Based on a
Relational Semantics of Programs. Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria, 2011.

See the report for the full calculus.

Wolfgang Schreiner http://www.risc.jku.at 18/46



1. Programs as State Relations

2. The RISC ProgramExplorer

Wolfgang Schreiner http://www.risc.jku.at 19/46



The RISC ProgramExplorer

An integrated environment for program reasoning.
Research Institute for Symbolic Computation (RISC), 2008–.

http://www.risc.jku.at/research/formal/software/ProgramExplorer

Integrates the RISC ProofNavigator for computer-assisted proving.
Written in Java, runs under Linux (only), freely available (GPL).

Programs written in “MiniJava”.
Subset of Java with full support of control flow interruptions.
Value (not pointer) semantics for arrays and objects.

Theories and specifications written in a formula language.
Derived from the language of the RISC ProofNavigator.

Semantic analysis and verification.
Program methods are translated into their “semantic essence”.

Open for human inspection.
From the semantics, the verification tasks are generated.

Solved by automatic decision procedure or interactive proof.

Tight integration of executable programs, declarative specifications,
mathematical semantics, and verification tasks.

Wolfgang Schreiner http://www.risc.jku.at 20/46



Using the Software

See “The RISC ProgramExplorer: Tutorial and Manual”.
Develop a theory.

File “Theory.theory” with a theory Theory of mathematical types,
constants, functions, predicates, axioms, and theorems.
Can be also added to a program file.

Develop a program.
File “Class.java” with a class Class that contains class (static)
and object (non-static) variables, methods and constructors.
Class may be annotated by a theory (and an object invariant).
Methods may be annotated by method specifications.
Loops may be annotated by invariants and termination terms.

Analyze method semantics.
Transition relations, termination conditions, . . . of the method body
and its individual commands.

Perform verification tasks.
Frame, postcondition, termination, preconditions, loop-related tasks,
type-checking conditions.

Wolfgang Schreiner http://www.risc.jku.at 21/46



Starting the Software

Starting the software:
module load ProgramExplorer (only at RISC)
ProgramExplorer &

Command line options:
Usage: ProgramExplorer [OPTION]...

OPTION: one of the following options:

-h, --help: print this message.

-cp, --classpath [PATH]:

directories representing top package.

Environment Variables:

PE_CLASSPATH:

the directories (separated by ":") representing the

top package (default the current working directory)

...

Task repository created/read in current working directory:
Subdirectory .PETASKS.timestamp (ProgramExplorer tasks)
Subdirectory .ProofNavigator (ProofNavigator legacy)

Wolfgang Schreiner http://www.risc.jku.at 22/46



The Graphical User Interface

Wolfgang Schreiner http://www.risc.jku.at 23/46



A Program

/*@..

class Sum

{

static int sum(int n) /*@..

{

int s;

if (n < 0)

s = -1;

else

{

s = 0;

int i = 1;

while (i <= n) /*@..

{

s = s+i;

i = i+1;

}

}

return s;

}

}

Markers /*@.. indicate
hidden mathematical annotations.

Wolfgang Schreiner http://www.risc.jku.at 24/46



A Theory

/*@

theory {

sum: (INT, INT) -> INT;

sumaxiom: AXIOM

FORALL(m: INT, n: INT):

IF n<m THEN

sum(m, n) = 0

ELSE

sum(m, n) = n+sum(m, n-1)

ENDIF;

}

@*/

class Sum

...

The introduction of a function sum(m, n) =
∑n

j=m j .

Wolfgang Schreiner http://www.risc.jku.at 25/46



A Method Specification

static int sum(int n) /*@

requires VAR n < Base.MAX_INT;

ensures

LET result=VALUE@NEXT IN

IF VAR n < 0

THEN result = -1

ELSE result = sum(1, VAR n)

ENDIF;

@*/

...

For non-negative n, a call of program method sum(n) returns sum(1, n)
(and does not modify any global variable).

Wolfgang Schreiner http://www.risc.jku.at 26/46



A Loop Annotation

while (i <= n) /*@

invariant VAR n < Base.MAX_INT

AND 1 <= VAR i AND VAR i <= VAR n+1

AND VAR s=sum(1, VAR i-1);

decreases VAR n - VAR i + 1;

@*/

{

s = s+i;

i = i+1;

}

}

The loop invariant and termination term (measure).

Wolfgang Schreiner http://www.risc.jku.at 27/46



The Specification Language

Derived from the language of the RISC ProofNavigator.
State conditions/relations, state terms.

State condition: method precondition (requires).
State relation: method postcondition (ensures),
loop invariant (invariant).
State term: termination term (decreases).

References to program variables.
OLD x : the value of program variable x in the pre-state.
VAR x : the value of program variable x in the post-state.

In state conditions/terms, both refer to the value in the current state.
If program variable is of the program type T , then then OLD/VAR x is
of the mathematical type T ′.

int → Base.int=[Base.MIN INT,Base.MAX INT].

Function results
VALUE@NEXT: the return value of a program function.

The value of the function call’s post-state NEXT.

Wolfgang Schreiner http://www.risc.jku.at 28/46



The Semantics View

Wolfgang Schreiner http://www.risc.jku.at 29/46



The Method Body

Select method symbol “sum” and
menu entry ”Show Semantics”.

Wolfgang Schreiner http://www.risc.jku.at 30/46



A Body Command

Move the mouse pointer
over the box to the
left of the loop.

Wolfgang Schreiner http://www.risc.jku.at 31/46



The Semantics Elements

Pre-State Knowledge
What is known about the pre-state of the command.

Precondition
What has to be true for the pre-state of the command such that
the command may be executed.

Effects
Which kind of effects may the command have.
variables: which variables may be changed.
exceptions: which exceptions may be thrown.
executes, continues, breaks, returns: may the execution terminate
normally, may it be terminated by a continue, break, return.

Transition Relation
The prestate/poststate relationship of the command.

Termination
What has to be true for the pre-state of the command such that
the command terminates.

Formulas are shown after simplification (see “Show Original Formulas”).
Wolfgang Schreiner http://www.risc.jku.at 32/46



Constraining a State

Select the loop body, enter in the box
the condition VAR s=2 AND VAR i=1,
press “Submit”, and move the mouse to i=i+1.

Wolfgang Schreiner http://www.risc.jku.at 33/46



The Verification Tasks

Wolfgang Schreiner http://www.risc.jku.at 34/46



The Verification Tasks

Effects: does the method only change those global variables
indicated in the method’s assignable clause?
Postcondition: do the method’s precondition and the body’s state
relation imply the method’s postcondition?
Termination: does the method’s precondition imply the body’s
termination condition?
Precondition: does a statement’s prestate knowledge imply the
statement’s precondition?
Loops: is the loop invariant preserved, the measure well-formed
(does not become negative) and decreased?
Type checking conditions: are all formulas well-typed?
Specification validation: does for every input that satisfies a
precondition exist a result that does (not) satisfy the postcondition?

Partially solved by automatic decision procedure, partially by an
interactive computer-supported proof.

Wolfgang Schreiner http://www.risc.jku.at 35/46



The Task States

The task status is indicated by color (icon).

Blue (sun): the task was solved in the current execution of the RISC
ProgramExplorer (automatically or by an interactive proof).

Violet (partially clouded): the task was solved in a previous
execution by an interactive proof.

Nothing has changed, so we need not perform the proof again.
However, we may replay the proof to investigate it.

Red (partially clouded): there exists a proof but it is either not
complete or cannot be trusted any more (something has changed).

Red (fully clouded): there does not yet exist a proof.

Select “Execute Task” to start/replay a proof, “Show Proof” to display a
proof, “Reset Task” to delete a proof.

Wolfgang Schreiner http://www.risc.jku.at 36/46



A Postcondition Proof

Wolfgang Schreiner http://www.risc.jku.at 37/46



Linear Search

/*@..

public class Searching

{

public static int search(int[] a, int x) /*@..

{

int n = a.length;

int r = -1;

int i = 0;

while (i < n && r == -1) /*@..

{

if (a[i] == x)

r = i;

else

i = i+1;

}

return r;

}

}

Wolfgang Schreiner http://www.risc.jku.at 38/46



The Representation of Arrays

The program type int[] is mapped to the mathematical type
Base.IntArray.

theory Base

{

...

IntArray: TYPE =

[#value: ARRAY int OF int, length: nat, null: BOOLEAN#];

...

}

(VAR a).length: the number of elements in array a.

(VAR a).value[i]: the element with index i in array a.

(VAR a).null: a is the null pointer.

Program type Class is mapped to mathematical type Class.Class ;
Class [] is mapped to Class.Array.

Wolfgang Schreiner http://www.risc.jku.at 39/46



Theory

/*@

theory uses Base {

int: TYPE = Base.int;

intArray: TYPE = Base.IntArray;

smallestPosition: FORMULA

FORALL(a: intArray, n: NAT, x: int):

(EXISTS(i:int): 0 <= i AND i < n AND a.value[i] = x) =>

(EXISTS(i:int): 0 <= i AND i < n AND a.value[i] = x AND

(FORALL(j:int): 0 <= j AND j < n AND a.value[j] = x =>

j >= i));

}

@*/

public class Searching

...

Wolfgang Schreiner http://www.risc.jku.at 40/46



Method Specification

public static int search(int[] a, int x) /*@

requires (VAR a).null = FALSE;

ensures

LET result = VALUE@NEXT, n = (VAR a).length IN

IF result = -1 THEN

FORALL(i: INT): 0 <= i AND i < n =>

(VAR a).value[i] /= VAR x

ELSE

0 <= result AND result < n AND

(FORALL(i: INT): 0 <= i AND i < result =>

(VAR a).value[i] /= VAR x) AND

(VAR a).value[result] = VAR x

ENDIF;

@*/

...

Wolfgang Schreiner http://www.risc.jku.at 41/46



Loop Annotation

while (i < n && r == -1) /*@

invariant (VAR a).null = FALSE AND VAR n = (VAR a).length

AND 0 <= VAR i AND VAR i <= VAR n

AND (FORALL(i: INT): 0 <= i AND i < VAR i =>

(VAR a).value[i] /= VAR x)

AND (VAR r = -1 OR (VAR r = VAR i AND VAR i < VAR n AND

(VAR a).value[VAR r] = VAR x));

decreases IF VAR r = -1 THEN VAR n - VAR i ELSE 0 ENDIF;

@*/

{

if (a[i] == x)

r = i;

else

i = i+1;

}

Wolfgang Schreiner http://www.risc.jku.at 42/46



Method Semantics

Wolfgang Schreiner http://www.risc.jku.at 43/46



Verification Tasks

Wolfgang Schreiner http://www.risc.jku.at 44/46



Invariant Proof

Wolfgang Schreiner http://www.risc.jku.at 45/46



Working Strategy

Develop theory.
Introduce interesting theorems that may be used in verifications.

Develop specifications.
Validate specifications, e.g. by showing satisfiability and non-triviality.

Develop program with annotations.
Validate programs/annotations by investigating program semantics.

Prove postcondition and termination.
Partial and total correctness.
By proofs necessity of additional theorems may be detected.

Prove precondition tasks and loop tasks.
By proofs necessity of additional theorems may be detected.

Prove mathematical theorems.
Validation of auxiliary knowledge used in verifications.

The integrated development of theories, specifications, programs,
annotations is crucial for the design of provably correct programs.

Wolfgang Schreiner http://www.risc.jku.at 46/46


	Programs as State Relations
	The RISC ProgramExplorer

