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Specifying and Verifying Programs v

We will discuss three (closely interrelated) calculi.
Hoare Calculus: {P} ¢ {Q}

If command c is executed in a pre-state with property P and
terminates, it yields a post-state with property Q.

{x=aAny=blx=x+y{x=a+yAy=>b}
Predicate Transformers: wp(c, Q) = P

If the execution of command c shall yield a post-state with
property @, it must be executed in a pre-state with property P.

wp(x :=x+y,x=a+yAy=b)=(x+y=a+yAy=Db)
State Relations: ¢ : [P = Q]

The post-state generated by the execution of command c is related to
the pre-state by P = Q (where only variables x, ... have changed).

x=x+y:|var x =old x + old y[*
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The Hoare Calculus El

First and best-known calculus for program reasoning (C.A.R. Hoare).
“Hoare triple”: {P} c {Q}
Logical propositions P and @, program command c.
The Hoare triple is itself a logical proposition.
The Hoare calculus gives rules for constructing true Hoare triples.
Partial correctness interpretation of {P} ¢ {Q}:
“If ¢ is executed in a state in which P holds, then it terminates
in a state in which @ holds unless it aborts or runs forever.”
Program does not produce wrong result.
But program also need not produce any result.
Abortion and non-termination are not (yet) ruled out.
Total correctness interpretation of {P} ¢ {Q}:
“If c is executed in a state in which P holds, then it terminates
in a state in which @ holds.”
Program produces the correct result.

We will use the partial correctness interpretation for the moment.
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The Rules of the Hoare Calculus E{

Hoare calculus rules are inference rules with Hoare triples as proof goals.

{Pl} (5] {Ql} {Pn} Cp {Qn} VC1,...,VCm
{P} c{Q}

Application of a rule to a triple {P} ¢ {Q} to be verified yields
other triples {P1} c1 {@1}...{Pn} cn {Qn} to be verified, and
formulas VCy,..., VCp, (the verification conditions) to be proved.

Given a Hoare triple {P}c{Q} as the root of the verification tree:
The rules are repeatedly applied until the leaves of the tree do not
contain any more Hoare triples.
If all verification conditions in the tree can be proved, the root of the
tree represents a valid Hoare triple.
The Hoare calculus generates verification conditions such that the validity
of the conditions implies the validity of the original Hoare triple.
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Weakening and Strengthening W

P=P {P}c{Q) @=Q
[Py e {Q}

A1 Ay
B

Forward: If we have shown A; and A,, then we have also shown B.
Backward: To show B, it suffices to show A; and A,.

Logical derivation:

Interpretation of above sentence:

To show that, if P holds, then @ holds after executing c, it suffices to
show this for a P’ weaker than P and a Q' stronger than Q.

Precondition may be weakened, postcondition may be strengthened.
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Special Commands v

{P} skip {P} {true} abort {false}

The skip command does not change the state; if P holds before its
execution, then P thus holds afterwards as well.

The abort command aborts execution and thus trivially satisfies
partial correctness.

Axiom implies { P} abort {Q} for arbitrary P, Q.
Useful commands for reasoning and program transformations.
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Scalar Assignments v

{Qle/x)} x := e {Q}

Syntax

Variable x, expression e.
Qle/x] ... Q where every free occurrence of x is replaced by e.

Interpretation

To make sure that @ holds for x after the assignment of e to x, it
suffices to make sure that @ holds for e before the assignment.

Partial correctness
Evaluation of e may abort.

{x+3<5} x:=x+3 {x<5}
{x <2} x:=x+3 {x<5}
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Array Assignments ¢

{Q[ali — el/al} ali] = e {Q}

An array is modelled as a function a: | — V.

Index set /, value set V.
a[i] = e ...array a contains at index i the value e.

Term a[i — €] (“array a updated by assigning value e to index /")

A new array that contains at index i the value e.
All other elements of the array are the same as in a.

Thus array assignment becomes a special case of scalar assignment.
Think of “a[i] :== €" as “a:=a[i — €]".

{ali = x]1] > 0} a[i] :=x {a[1] > 0}

Arrays are here considered as basic values (no pointer semantics).
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Array Assignments ¢

How to reason about a[i — €]?
Qlali — e]l/]]
(i=J=Qlel)A(i #J = Qlalll)

Array Axioms
i=j=ali—ejl=e
i #j = ali — e]j] = alj]
{ali = x][1] >0} a[i]:=x {a[1l] >0}
{i=1=x>0A(#1=2a[1]>0)} a[ij:=x {a[l] >0}

Get rid of “array update terms” when applied to indices.
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Command Sequences v

{P} a {R} {R}  {Q}
{P} c1;00 {Q}

Interpretation

To show that, if P holds before the execution of ¢;; ¢p, then Q holds
afterwards, it suffices to show for some R that

if P holds before c;, that R holds afterwards, and that
if R holds before ¢z, then Q holds afterwards.

Problem: find suitable R.

Easy in many cases (see later).

{x+y—=1>0}y:=y—1{x+y >0} {x+y>0} x:=x+y {x>0}
{x+y—-1>0ty=y—Lix:=x+y {x>0}

The calculus itself does not indicate how to find intermediate property.
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Conditionals v

{PAb} a {Q} {PA-b} c {Q}
{P} if b then ¢ else ¢; {Q}

{PAb} c{Q} (PA-b)=Q
{P} if b then c {Q}

Interpretation
To show that, if P holds before the execution of the conditional, then
Q holds afterwards,
it suffices to show that the same is true for each conditional branch,
under the additional assumption that this branch is executed.

{x#0Ax>0} y :=x{y >0} {x#0Ax 20} y:=—x{y >0}
{x#0}if x >0then y :=xelse y :=—x {y >0}
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Loops \

{1 AbY ¢ {1}

{true} loop {false} {I} while b do ¢ {I A —b}

Interpretation:

The loop command does not terminate and thus trivially satisfies
partial correctness.
Axiom implies {P} loop {Q} for arbitrary P, Q.
If it is the case that
| holds before the execution of the while-loop and
| also holds after every iteration of the loop body,
then / holds also after the execution of the loop (together with the
negation of the loop condition b).
| is a loop invariant.
Problem:
Rule for while-loop does not have arbitrary pre/post-conditions P, Q.

In practice, we combine this rule with the strengthening/weakening-rule.
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Loops (Generalized) N4

P=1 {IAb}c{l} (IN-b)= Q
{P} while b do c {Q}

Interpretation:
To show that, if before the execution of a while-loop the property P

holds, after its termination the property @ holds, it suffices to show
for some property / (the loop invariant) that

I holds before the loop is executed (i.e. that P implies /),

if I holds when the loop body is entered (i.e. if also b holds), that

after the execution of the loop body / still holds,
when the loop terminates (i.e. if b does not hold), / implies Q.

Problem: find appropriate loop invariant /.
Strongest relationship between all variables modified in loop body.

The calculus itself does not indicate how to find suitable loop invariant.
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Example v

les=Y"1jAl<i<n+1

(n>0As=0Ai=1)=1
{InNi<n}s:=s+ii=i+1{l}
(Inign)=s=3%",]j
n>0As=0Ai=1}whilei<ndo (s:=s+ii=i+1){s=>",J

j=1

The invariant captures the “essence” of a loop; only by giving its invariant,
a true understanding of a loop is demonstrated.
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A Program Verification v

Verification of the following Hoare triple:

{Input} while i < ndo (s:=s+i;i:=i+1) {Output}
Auxiliary predicates:

Input : =n>0As=0Ai=1

Output = s =37, j

Invariant :@s:Z};ij/\l <i<n+1
Verification conditions:

A :& Input = Invariant

B :& Invariant A i < n = Invariant[i + 1/i][s + i/s]

C :& Invariant A i £ n = Qutput

If the verification conditions are valid, the Hoare triple is true.
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RISCAL: Checking Program Execution E(

val N:Nat; type number = N[N]; type index = N[N+1]; type result = N[N-(1+N)/2];

proc summation(n:number): result
requires n > 0;
ensures result = > j:number with 1 < j A j < n. j;

var s:result := 0;
var i:index :=1
while i < n do
invariant s = > j:number with 1 < j A j < i-1. j;
invariant 1 < i A i < n+i;

{
s = s+ij
1= i+1;
}
return s;
}

We check for some N the program execution; this implies that the
invariant is not too strong.

Wolfgang Schreiner http://www.risc.jku.at 18/70



7™\
RISCAL: Checking Verification Conditions .E {'

pred Input(n:number, s:result, i:index) &
n>0As=0A1¢=1;

pred Output(n:number, s:result) &
s = > jinumber with 1 < j A j < n. j;

pred Invariant(n:number, s:result, i:index) &
(s = Y jinumber with 1 < j A j < i-1. j) A1 < i Ai < n+lg

theorem A(n:number, s:result, i:index) <

Input(n, s, i) = Invariant(n, s, i);
theorem B(n:number, s:result, i:index) <

Invariant(n, s, i) A i < n = Invariant(n, s+i, i+1);
theorem C(n:number, s:result, i:index) &

Invariant(n, s, i) A (i < n) = Output(n, s);

We check for some N that the verification conditions are valid; this also
implies that the invariant is not too weak.
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Another Program Verification '& {'
[ ]
Verification of the following Hoare triple:

{olda = a A oldx = x}

i:=0;r:=-1;,n=|a|

while i < nAr=-1do
if a[i] = x

then r .=
else i :=i+1

{a = olda A\ x = oldx A
(r=—-1AVi:0<i<|a=alil#x)V
(0<r<lalnalr]=xAVi:0<i<r= a[i] #x))}

Invariant :< olda = a A oldx = x A n=|a| A
0<i<nAYj:0<j<i=alj]#xA
(r==-1Vv(r=iNi<nAalr] =x))

Find the smallest index r of an occurrence of value x in array a (r = —1,

if x does not occur in a).
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RISCAL: Checking Program Execution W

val N:N; val M:N;
type index = Z[-1,N]; type elem = N[M]; type array = Array[N,elem];

proc search(a:array, x:elem): index
ensures (result = -1 A Vi:index. 0 < i A i <N = al[i]l # x) V
(0 < result A result < N A
alresult] = x A Vi:index. 0 < i A i < result = al[i] # x);

{
var i:index = 0;
var r:index = -1;
while i < N A r = -1 do
invariant 0 < i A 1 < N A Vj:index. 0 < j A j < i = aljl # x;
invariant r = -1 V (r = 1 A i < N A al[r] = x);
{
if ali] = x
then r = 1i;
else i = i+1;
}
return r;
}

We check for some N, M the program execution.
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The Verification Conditions .El

Input :< olda = a A oldx = x A n=length(a) N\i =0Ar=—1

Output = a = olda \ x = oldx N
((r=—=1AVi:0<i< length(a) = a[i] # x) V
(0 < r < length(a) Aa[r] = x AVi:0<i<r= a[i] #x))
Invariant ;< olda = a A oldx = x A n=|a| A
0<i<nAYj:0<j<i=alj]#xA
(r==-1Vv(r=iANi<nAalr] =x))

A & Input = Invariant

Bi & Invariant Ni < nAr=—1Aa[i] = x = Invariant[i/r]

Bs i< Invariant Ai < nAr=—1Aa[i] # x = Invariant[i + 1/i]
C :& Invariant A =(i < n A\ r = —1) = Output

The verification conditions A, By, By, C must be valid.
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RISCAL: Checking Verification Conditions 'E {'

pred Input(i:index, r:index) <& i =0 A r = -1;
pred Output(a:array, x:elem, i:index, r:index) &
(r =-1 A Viiindex. 0 < i A i < N = ali]l # x) V
(0 <rAr<NAalr] =x A Vitindex. 0 < i A i< r = ali]l # x);
pred Invariant(a:array, x:elem, i:index, r:index) &
0<iAi<NA(jrindex. 0 < j A jJ<i= aljl #zx) A
(r=-1V (x=1A1i<NAalr] =x));

theorem A(a:array, x:elem, i:index, r:index) &
Input(i, r) = Invariant(a, x, i, r);
theorem Bl(a:array, x:elem, i:index, r:index) <&
Invariant(a, x, i, r) A1 <N A r=-1A al[i] = x =
Invariant(a, x, i, i)
theorem B2(a:array, x:elem, i:index, r:index) <
Invariant(a, x, i, r) A1 <N A r=-1A ali]l # x =
Invariant(a, x, i+l, r);
theorem C(a:array, x:elem, i:index, r:index) &
Invariant(a, x, i, ) A (1 <N AT = -1) =
Output(a, x, i, r);

We check for some N, M that the verification conditions are valid.
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Backward Reasoning .E {.

Implication of rule for command sequences and rule for assignments:

{P} c {Qle/x]}
{P} c;x:=e{Q}

Interpretation
If the last command of a sequence is an assignment, we can remove
the assignment from the proof obligation.
By multiple application, assignment sequences can be removed from
the back to the front.

{P} {P} {P} {P} P=x=4
x 1= x+1; x 1= x+1; x 1= x+1; {x+1=5}

y = 2%x; y 1= 2%x; {x+2x=15} (&x=4)

z = x+y {x+y=15} (& 3x=15)

{z =15} (& x=5)
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Weakest Preconditions E {

A calculus for “backward reasoning” (E.W. Dijkstra).
Predicate transformer wp

Function “wp” that takes a command ¢ and a postcondition @ and
returns a precondition.
Read wp(c, Q) as “the weakest precondition of ¢ w.r.t. Q"

wp(c, Q) is a precondition for ¢ that ensures Q as a postcondition.
Must satisfy {wp(c, Q)} ¢ {Q}.
wp(c, Q) is the weakest such precondition.

Take any P such that {P} ¢ {Q}.
Then P = wp(c, Q).

Consequence: {P} ¢ {Q} iff (P = wp(c, Q))
We want to prove {P} ¢ {Q}.
We may prove P = wp(c, Q) instead.

Verification is reduced to the calculation of weakest preconditions.
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Weakest Preconditions v

The weakest precondition of each program construct.

wp(skip, Q) = Q
wp(abort, Q) = true
wp(x := e, Q) = Qle/x]
wp(ci; &2, Q) = wp(cr, wp(cz, Q))
wp(if b then ¢ else ¢, Q) = (b = wp(c1, Q)) A (=b = wp(c2, Q))
wp(if b then ¢, Q) < (b= wp(c, Q)) A (b= Q)
wp(whnle bdoc,Q)=...

Loops represent a special problem (see later).
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Forward Reasoning E {

Sometimes, we want to derive a postcondition from a given precondition.
{P} x:=e {3x0 : P[xo/x] A\ x = e[x0/x]|}

Forward Reasoning

What is the maximum we know about the post-state of an
assignment x := e, if the pre-state satisfies P?

We know that P holds for some value xp (the value of x in the
pre-state) and that x equals e[xg/x].

{x>0Any=a}
x=x+1
{3x % >0Ay=aAx=x+1}
(& (Fx:x>20Ax=x+1)Ay=2a)
(&x>0Ay=a)
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Strongest Postcondition E {

A calculus for forward reasoning.
Predicate transformer sp

Function “sp” that takes a precondition P and a command ¢ and
returns a postcondition.
Read sp(c, P) as “the strongest postcondition of ¢ w.r.t. P".

sp(c, P) is a postcondition for ¢ that is ensured by precondition P.
Must satisfy {P} ¢ {sp(c, P)}.
sp(c, P) is the strongest such postcondition.
Take any P, Q such that {P} ¢ {Q}.
Then sp(c, P) = Q.
Consequence: {P} ¢ {Q} iff (sp(c, P) = Q).
We want to prove {P} ¢ {Q}.
We may prove sp(c, P) = @ instead.

Verification is reduced to the calculation of strongest postconditions.
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Strongest Postconditions v

The strongest postcondition of each program construct.

sp(skip, P) = P

sp(abort, P) = false

sp(x :=e,P) =3xg : Plxo/x] A x = e[xo/X]

sp(c1; ¢, P) = sp(cz, sp(ct, P))

sp(if b then ¢, else ¢, P) < sp(ci, P A b) V sp(ca, P A —b)
sp(if b then c, P) = sp(c,P A b) V (P A —b)

sp(while bdo ¢,P) = ...

Forward reasoning as a (less-known) alternative to backward-reasoning.
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Hoare Calc. and Predicate Transformers .E {'

In practice, often a combination of the calculi is applied.

{P} c1;while b do c;c, {Q}

Assume ¢; and ¢ do not contain loop commands.
It suffices to prove
{sp(P, c1)} while b do ¢ {wp(c, Q)}

Predicate transformers are applied to reduce the verification of a program
to the Hoare-style verification of loops.
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Weakest Liberal Preconditions for Loops .E{

Why not apply predicate transformers to loops?

wp(loop, Q) = true
wp(while b do ¢, Q) = Lo(Q) A L1 (Q) A L (Q) A ...

Lo(Q) = true
Lit1(Q) = (=b = Q) A (b= wp(c, Li(Q)))

Interpretation

Weakest precondition that ensures that loops stops in a state
satisfying @, unless it aborts or runs forever.
Infinite sequence of predicates L;(Q):
Weakest precondition that ensures that after less than / iterations the
state satisfies @, unless the loop aborts or does not yet terminate.
Alternative view: L;(Q) = wp(if;, Q)
ifo = loop
ifi1 = if b then (c;if;)
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Example v

wp(while i < ndoi:=i+1,Q)

Lo(@Q) = true
LQ=(£n=Q
S(igdn=Q
s(itn=Q
LQQ=>(Ln=QA(i<n=wp(i:=i+1,iZ£n=Q))
S@igdn=Q)A
(i<n=((+1£n= Q[i+1/i]))
LQ)=>(gLn=QA(i<n=wp(i:=i+1,
(ign=Q)A(i<n=(i+1<n= Q[i+1/i]))))
S(ign=Q)A
(i<n=(i+1¢£n=Q[i+1/i])A
(i+1<n=(i+2%£n= Q[i+2/i]))))

~—

A (i< n=wp(i:=i+1,true))
A (i < n=>true)

~——
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Weakest Liberal Preconditions for Loops E{

Sequence L;(Q) is monotonically increasing in strength:
VieN: L;+1(Q) = L,(Q)
The weakest precondition is the “lowest upper bound™
Vi € N : wp(while b do ¢, Q) = L;(Q).
VP:(Vie N:P= L/(Q)) = (P = wp(while b do c, Q)).
We can only compute weaker approximation L;(Q).
wp(while b do ¢, Q) = L;(Q).
We want to prove {P} while b do ¢ {Q}.

This is equivalent to proving P = wp(while b do ¢, Q).
Thus P = L;(Q) must hold as well.

If we can prove =(P = L;(Q)), ...

{P} while b do c {Q} does not hold.
If we fail, we may try the easier proof =(P = L;+1(Q)).

Falsification is possible by use of approximation L;, but verification is not.
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Preconditions for Loops with Invariants

2\,
N2

wp(while b do invariant /; ¢, Q) =
let oldx = x, ... in
IN(x,...: I ANb=wp(c, 1)) A
(Vx,...: I A=b= Q)

Loop body ¢ only modifies variables x, . ..
Loop is annotated with invariant /.

May refer to new values x, ... of variables after every iteration.
May refer to original values oldx, ... when loop started execution.

Generated verification condition ensures:

I holds in the initial state of the loop.
| is preserved by the execution of the loop body c.
When the loop terminates, | ensures postcondition Q.

This precondition is only “weakest” relative to the invariant.
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7™\
Example ¢

e

while i <ndo (s:=s+i;i:=i+1)
= (s:=s+ii=i+1)

| :& s =olds + (Zj;ihﬁj) Noldi <i<n+1

Weakest precondition:
wp(while i < n do invariant /; ¢/ Q) =
let olds = s, oldi = i in
INVs,i:INi<n=I[i+1/i][s+i/s])A
(Vs,i: ITA=(i<n)= Q)
Verification condition:
n>0Ai=1As=0=wp(..,s=>7,))

Many verification systems implement (a variant of) this calculus.
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Termination E {

Hoare rules for loop and while are replaced as follows:

I=t>0 {INbAt=N}c{Int <N}

{false} loop {false} {I} while b do ¢ {I A —b}

P=11l=t>0 {INbAt=N}c{IAnt<N} (IN-b)=Q
{P} while b do c {Q}

New interpretation of {P} ¢ {Q}.
If execution of ¢ starts in a state where P holds, then execution
terminates in a state where @ holds, unless it aborts.
Non-termination is ruled out, abortion not (yet).
The loop command thus does not satisfy total correctness.
Termination measure t (term type-checked to denote an integer).
Becomes smaller by every iteration of the loop.
But does not become negative.
Consequently, the loop must eventually terminate.
The initial value of t limits the number of loop iterations.
Any well-founded ordering may be used as the domain of t.
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Example v

les=Y1jAl<i<n+1
t:=n—i+1

(n>0ANi=1As=0)=1 I=n—-i+1>0
{Ini<nAn—i+1=N}s:=s+ii=i+1{IAn—i+1<N}
(I/\iﬁn):szzjrlej

{n>0Ai=1As=0} whilei<ndo (s:=s+i;i:=i+1){s=>",/}

In practice, termination is easy to show (compared to partial correctness).
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Termination in RISCAL .E{

while i < n do
invariant s = > j:number with 1 < j A j < i-1. j;
invariant 1 < i A i < nti;
decreases n+l1-i;
{
s = s+i;
i = i+1;

}

fun Termination(n:number, s:result, i:index): number =
n+l-i;
theorem T(n:number, s:result, i:index) &
Invariant(n, s, i) = Termination(n, s, i) > 0;
theorem B(n:number, s:result, i:index) &
Invariant(n, s, i) A i < n =
Invariant(n, s+i, i+1) A
Termination(n, s+i, i+1) < Termination(n, s, 1i);
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Termination in RISCAL %

while i < N A r = -1 do
invariant 0 < i A i < N;
invariant Vj:index. 0 < j A j < i = aljl # x;
=i Ai<QNAalr] =x);

invariant r = -1 V (¢
decreases if r = -1 then N-i else 0;
{
if ali] = x
then r = i;
else i = i+1;
}

fun Termination(a:array, x:elem, i:index, r:index): index =
if r = -1 then N-i else 0;
theorem T(a:array, x:elem, i:index, r:index) &
Invariant(a, x, i, r) = Termination(a, x, i, r) > 0;
theorem Bl(a:array, x:elem, i:index, r:index) &
Invariant(a, x, i, r) A1 <N A r = -1 A al[i]l = x =
Invariant(a, x, i, i) A
Termination(a, x, i, i) < Termination(a, x, i, r);
theorem B2(a:array, x:elem, i:index, r:index) <
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Weakest Preconditions for Loops v

wp(loop, Q) = false
wp(while b do ¢, Q) = Lo(Q) V L1(Q) V L(Q) V...

Lo(Q) = false
L,'+1(Q) = (_‘b = Q) A (b = Wp(C7 LI(Q)))

New interpretation
Weakest precondition that ensures that the loop terminates in a state
in which @ holds, unless it aborts.
New interpretation of L;(Q)
Weakest precondition that ensures that the loop terminates after less
than 7 iterations in a state in which @ holds, unless it aborts.
Preserves property: {P} ¢ {Q} iff (P = wp(c, Q))
Now for total correctness interpretation of Hoare calculus.
Preserves alternative view: L;(Q) < wp(if;, Q)
ifo = loop
ifiy1 = if b then (c;if;)
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7™\
Example v

wp(while i < ndo i :=i+1,Q)

Lo(@Q) = false
L(Q)=(ZLn=Q)A(i<n= wp(i=i+1,L(Q)))
S (ign=Q)A(i<n= false)
SitdnAQ
LQ)=>(<n=QA(<n= wp(i:=i+1,11(Q)))
S(gn=>Q)A
(i<n=((+1£nAQ[i+1/i]))
LQ)=((ZLn=Q)A(i<n= wp(i:=i+1,1(Q)))
S (ign=Q)A
(i<n= ((i+1£n= Qi +1/i)A
(i+1<n=(+2¢£nAQ[i+2/))))
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Weakest Preconditions for Loops 'E {'

Sequence L;(Q) is now monotonically decreasing in strength:
Vi e N: Li(Q) = Lis1(Q).
The weakest precondition is the “greatest lower bound™
Vi € N: L/(Q) = wp(while b do c, Q).
VP : (Vie N: Li(Q)= P)= (wp(while b do ¢, Q) = P).
We can only compute a stronger approximation L;(Q).
Li(@) = wp(while b do c, Q).
We want to prove {P} ¢ {Q}.
It suffices to prove P = wp(while b do ¢, Q).
It thus also suffices to prove P = L;(Q).
If proof fails, we may try the easier proof P = L;11(Q)
However, verifications are typically not successful with any finite
approximation of the weakest precondition.
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7\

Weakest Precondition with Measures v

wp(while b do invariant /; decreases t; ¢*, Q) =
let oldx = x, ... in
IN(Mx,...: IANb=wp(C, 1)) A
(Vx,...: ITA=b= Q) A
(Vx,...: 1 =t>0)A
(Vx,...:IAb=1et T =t in wp(c,t < T))

Loop body ¢ only modifies variables x, . ..
Loop is annotated with termination measure (term) t.

May refer to new values x, ... of variables after every iteration.
Generated verification condition ensures:

t is non-negative before/after every loop iteration.
t is decremented by the execution of the loop body c.

Also here any well-founded ordering may be used as the domain of t.
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7™\
Example ¢

e

while i <ndo (s:=s+i;i:=i+1)
= (s:=s+ii=i+1)

| <& s = olds + (Zj;ihﬁ) ANoldi<i<n+1
ti=n+1-—1

Weakest precondition:
wp(while i < n do invariant /; ¢’ Q) =
let olds = s,oldi = i in
IN(Vs,i:INi<n=I[s+i/s,i+1/i])A
(Vs,i: ITA=(i<n)=Q)A
(Vs it ] =t>0)A
(Vs,izINi<n=1let T=n+1—iinn+1—-(i+1)<T)
Verification condition:
n>0Ai=1As=0=wp(..,s=> 7))
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RISCAL and Verification Conditions

File Edit SMT TP Help
File: summation.txt
(W ~Rc)

1// sumation: return the sun of all values fron 1 to n
2
3val N:Nat;
4 type number
5type index
6 type result

N1
VIN- (14N) /2

nin:number): result

jenumber with 1= Aj =n. j;

3 var i:inde
14 while i s ndo

15 dmvariont s = gjunber with 15§ 0§ 2 10 5
16 dnvariant 1siAdis

1 decrases nisl

18 {

19 s = s

20 =i

21}

2 return s;

3}

2

25// the verification conditions to be proved
26// for the total correctness of the progran

Eé pred Tnput

:nunber,
oni

sresult, irindex) o

nprea uutputm nunber, s: result) .
snumber with' 1= aj=n. j

zwred Tnvariant(n:nunber, s:result, izindex) =

35 (s = 3jinumber with 1's A J s i-1. ) A1sinisnd;
3

6
37fun remnznan(nmumner, s:result, i:index): number
&

wthenrem Atn:nusber, s:result, i:index)
requires n =

RISCAL implements Dijkstra’s calculus for VC generation.

Wolfgang Schreiner

RISC Algorithm Language (RISCAL)
Analysis
e 0 ve =

Transiation: (5 Nondeterminism DefaultValue: 0 Other Values: |
Execution: (@ Silent Inputs: Per Mille: Branches: Depth:
Visualization: | |Trace [ | Tree Width: 800 Height: 600

Multi-Threaded Threads: 4 Distributed Servers: ||

B | sumation(z) =

at_unknown position:
theoren is not true

ERROR encountered in execution (3 ms).

Executing _sumnation 6 Postsat(Z) with all 5 inputs

Execution completed for ALL inputs (1 ms, 5 checked, 0 inadnissible).

Executing _sumnation 6 PostNotTrivialAll(z) with all 5 inputs

Execution completed for ALL inputs (1 ms, 5 checked, 0 inadnissible).

Erecuting sumation 9 PostiotTrivialsone) .
Execution completed (o m:
Executing _sunmation 0, Pesmnmue(ﬂ with all 5 inputs.

Execution completed for ALL inputs (1 ms, 5 checked, 0 inadnissible).

Exeorcing _sumation 8 Corrapalz) with all 5 Inputs
o

mnat: n
Execution completed for ALL inputs (1 ms, 5 checked, 0 inadnissible).
ing _sunna

Execution completed for ALL inputs (1 ms, 5 checked, 0 inadnissible).

Executing _sumation_6_Loopop2(2) with s Tnpurs

Execution completed for ALL inputs (2 ms, 5 checked, 0 inadnissible).

Executing _summation_6_Loop0p3(2) with all 5 inputs

Execution completed for ALL inputs (2 ms, 5 checked, 0 inadnissible).
Execution completed for ALL inputs (3 ms, 5 checked, 0 inadnissible).

Execution completed for ALL inputs (3 ms, 5 checked, 0 inadnissible).

Executing _sunmation _0_Pre0pd() with all 5 inputs

Execution completed for ALL inputs (3 ms, 5 checked, 0 inadnissible).

Executing _summation_6_Preopl(z) with all 5 inputs

Execution completed for ALL inputs (3 ms, 5 checked, 0 inadnissible).

http://www.risc.jku.at

© ALL input: 5 checked, 0 inadnissible).

Execute operation
Validate specification
Execute specification
s precondition satisfiable?
@1s precondition not trivial?
I postcondition always satisfiable?
s postcondition always not trivial?
Is postcondition sometimes not trivia
Is result uniquely determined?
Verify specification precon
Verify correctness of result
Is result correct?
Verify iteration and recursion
Does loop invariant initially hold?
Does loop invariant initially hold?
s loop measure non-negative?
Is loop invariant preserved?
Isloop invariant preserved?
I5loop measure decreased?
Verify implementation preconditions
Is assigned value legal?
Is assigned value legal?
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L . 78]
RISCAL Verification Conditions E{

RISCAL splits Dijkstra’s single condition /nput = wp(C, Output) into
many “fine-grained” verification conditions:
Is result correct?
One condition for every ensures clause.
Does loop invariant initially hold? Is loop invariant preserved?
Partial correctness.
One condition for every invariant clause.
Is loop measure non-negative? Is loop measure decreased?
Termination.
One condition for every decreases clause.

Specification and implementation preconditions
Well-definedness of formulas and commands (later).
One condition for every partial function/predicate application.
Click on a condition to see the affected commands; if the procedure

contains conditionals, a condition is generated for each execution branch.
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Checking Verification Conditions .E {'

Double-click a condition to have it checked. > Execute Task
Checked conditions turn from red to blue. Show Counterexample
. B .. Print Description
Right-click a condition to see a pop-up menu. rint Definition
Check verification condition (same as double-click)  agplysmr sotver
Show variable values that invalidate condition. Apply Theorem Prover
Print relevant program information (e.g. invariant). Frintfrover Output
Print verification condition itself.
Apply SMT solver for faster checking (see menu "SMT").
Example: is loop invariant preserved?
s = (O jinumber with (1 < j) A (G < G-1)). )
theorem _summation_0_LoopOp3(n:number)
requires n > 0;
& Vs:result,i:index. ((((s = (3 j:number with (1 < PAG < (G-1)). 3))
A<D AGS @A G <) =
(let s = s+i in (let i = i+l in
(s = (O jimumber with (1 < ) A ( < (E-1)). §iNN);
Important: check models with small type sizes.
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Proving Verification Conditions %

RISCAL also provides an interface to automated theorem provers.

Menu “TP” and menu entry “Apply Theorem Prover”
Tries to prove condition for arbitrary type sizes.
“Print Prover Output:" shows details of proof attempt.
“Apply Prover to All Theorems:” multiple proofs (in parallel).

RISC Algoritm Language (RISCAL)

el

Many (but typically not all) automatic proof attempts may succeed.
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A

RISC ProofNavigator: A Theory of Arrays 'E {'

% constructive array definition
newcontext "arrays2";

% the types
INDEX: TYPE = NAT;
ELEM: TYPE;
ARR: TYPE =
[INDEX, ARRAY INDEX OF ELEM];

% error constants

any: ARRAY INDEX OF ELEM;
anyelem: ELEM;

anyarray: ARR;

% a selector operation

content:
ARR -> (ARRAY INDEX OF ELEM) =
LAMBDA(a:ARR): a.1;

Wolfgang Schreiner

http://www.risc.jku.at

% the array operations
length: ARR -> INDEX =
LAMBDA(a:ARR): a.0;
new: INDEX -> ARR =
LAMBDA (n:INDEX): (n, any);
put: (ARR, INDEX, ELEM) -> ARR =
LAMBDA(a:ARR, i:INDEX, e:ELEM):
IF i < length(a)
THEN (length(a),
content(a) WITH [i]:=e)
ELSE anyarray
ENDIF;
get: (ARR, INDEX) -> ELEM =
LAMBDA(a:ARR, i:INDEX):
IF i < length(a)
THEN content (a) [i]
ELSE anyelem ENDIF;
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7™\
Proof of Fundamental Array Properties 'E {'

% the classical array axioms as formulas to be proved
lengthl: FORMULA
FORALL(n:INDEX): length(new(n)) = n;

length2: FORMULA
FORALL(a:ARR, i:INDEX, e:ELEM):
i < length(a) => length(put(a, i, e))

length(a);

getl: FORMULA
FORALL(a:ARR, i:INDEX, e:ELEM):
i < length(a) => get(put(a, i, e), i) = e;

get2: FORMULA < [adu]: expand length, get, put, content
FORALL(a:ARR, i, j:INDEX, e :ELEM) : = [c3b]: scatber
i < length(a) AND j < length(a) AND

i/=3= [qid]: preved (CWCL)
get(put(a, i, e), j) = get(a, j);
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The Verification Conditions '&{

7\

newcontext
"linsearch";

% declaration
% of arrays

a: ARR;
olda: ARR;
x: ELEM;
oldx: ELEM;
i: NAT;
n: NAT;
r: INT;

Wolfgang Schreiner

Input: BOOLEAN = olda = a AND oldx = x AND
n = length(a) AND i = 0 AND r = -1;

[are

Output: BOOLEAN = a = olda AND
((r = -1 AND
(FORALL(j:NAT): j < length(a) =>
get(a,j) /= x)) OR
(0 <= r AND r < length(a) AND get(a,r) = x AND
(FORALL (j:NAT):
j<r =>get(a,j) /= x)));

Invariant: (ARR, ELEM, NAT, NAT, INT) -> BOOLEAN =
LAMBDA(a: ARR, x: ELEM, i: NAT, n: NAT, r: INT):
olda = a AND oldx = x AND
n = length(a) AND i <= n AND
(FORALL(j:NAT): j < i => get(a,j) /= x) AND
(r =-10R (r =1 AND i < n AND get(a,r) = x));
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The Verification Conditions (Contd) E(

A: FORMULA
Input => Invariant(a, x, i, n, r);

B1: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r
=> Invariant(a,x,i,n,i);

-1 AND get(a,i) =

B2: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r
=> Invariant(a,x,i+1,n,r);

-1 AND get(a,i) /= x

C: FORMULA
Invariant(a, x, i, n, r) AND NOT(i < n AND r = -1)
=> Qutput;
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A

. °
The Proofs v
.
A: [bca]: expand Input, Invariant B1: [p1b]: expand Invariant
[fuo]: scatter [If6]: proved (CVCL)
[bxg]: proved (CVCL)
(2 user actions) (1 user action)
B2: [a1b]: expand Invariantin6kv - [dca]: expand Invariant, Output in zfg
[slx]: scatter [tvy]: scatter
[aly]: auto [deu]: auto
[cch]: proved (CVCL) [eflj‘]‘?lé e t""s" (cveL)
[b1y]: proved (CVCL) [kell]:zrc)\eeg (CVCL)
[c1y]: proved (CVCL) [lel]: scatter
[d1y]: proved (CVCL) [lvn]: auto
[e1y]: proved (CVCL) foul [lap]: proved (CVCL)
cu]: auto
[blt]: proved (CVCL)
[geu]: proved (CVCL)
(3 user actions) (6 user actions)
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L 7Y
Termination ¢

Termination: (ARR, ELEM, NAT, NAT, INT) -> INT =
LAMBDA(a: ARR, x: ELEM, i: NAT, n: NAT, r: INT):
IF r=-1 THEN n-i ELSE O ENDIF;

T: FORMULA
Invariant(a, x, i, n, r) => Termination(a, x, i, n, r) >= 0;

B1: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r = -1 AND get(a,i) = x AND
Termination(a, x, i, n, r) = N
=> Invariant(a,x,i,n,i) AND Termination(a,x,i,n,i) < N;

B2: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r = -1 AND get(a,i) /= x AND
Termination(a, x, i, n, r) = N
=> Invariant(a,x,i+1,n,r) AND Termination(a,x,i+l,n,r) < N;
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. 7Y
Abortion .E "

New rules to prevent abortion.

{false} abort {true}
{Qle/x] A D(e)} x = e {Q}
{Qla[i — e]/a] A D(e) ND(i) N0 < i < length(a)} a[i] :=e {Q}

New interpretation of {P} ¢ {Q}.
If execution of c starts in a state, in which property P holds, then it
does not abort and eventually terminates in a state in which @ holds.

Sources of abortion.

Division by zero.
Index out of bounds exception.

D(e) makes sure that every subexpression of e is well defined.
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Definedness of Expressions

D(0) = true.
D(1) = true.
D(x) = true.

D(a[i]) = D(i) A0 < i < length(a).

D(e1 + e2) = D(e1) A D(e2).
D(e1 x e2) = D(e1) A D(e2).
D(e1/e2) = D(e1) A D(e2) A

D(true) = true.
D(false) = true.

e #0.

D(~b) = D(b).
D(b1 A bz) = D( 1) N D(bz)
D(by V b2) = D(b1) A D(b2).
D(e1 < &) = D(e1) A D(e2).
D(e1 < e2) = D(e1) A D(e2).
D(e1 > &) = D(e1) A D(e2).
D(e1 > e2) = D(e1) A D(e2)

Assumes that expressions have already been type-checked.
Jku.a
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Abortion .E "

Slight modification of existing rules.

P = D(b) {PAb} a {Q} {PA-b}c{Q}
{P} if b then ¢ else c; {Q}

P = D(b) {PAb} c{Q} (PA—-b)= Q
{P} if b then c {Q}

I = (t>0AD(b)) {INbAt=N}c{IAnt<N}
{l} while b do ¢ {I A b}

Expressions must be defined in any context.
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. 7Y
Abortion .E "

Similar modifications of weakest preconditions.

wp(abort, Q) = false
wp(x :=e, Q) = Q[e/x] A D(e)
wp(if b then ¢ else ¢, Q) =
D(b) A (b= wp(c1, Q)) A (=b = wp(cz, Q))
wp(if b then ¢, Q) = D(b) A (b= wp(c, Q)) A (—b= Q)
wp(while b do ¢, Q) = (Lo(Q) V L1(Q) V L(Q) Vv ...)

Lo(Q) = false
Lit1(Q) = D(b) A (mb = Q) A (b = wp(c, Li(Q)))

wp(c, Q) now makes sure that the execution of ¢ does not abort but
eventually terminates in a state in which @ holds.
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Procedure Specifications .E e

global g;
requires Pre;
ensures Post;

o:=p(i) { ¢}

Specification of a procedure p implemented by a command c.
Input parameter i, output parameter o, global variable g.
Command ¢ may read/write i, o, and g.

Precondition Pre (may refer to i, g).
Postcondition Post (may refer to i, 0, g, go).

go denotes the value of g before the execution of p.
Proof obligation
{Pre Nip =i Ngo=g} c {Postlip/i]}
Proof of the correctness of the implementation of a procedure with
respect to its specification.
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Example .E "

Procedure specification:
global g
requires g > 0A i >0
ensures gp =g -I+oN0<o<i
o:=p(i) { o:=g%i; g:=g/i }

Proof obligation:
{gZO/\i>0/\io:i/\g0=g}
0:=g%i, g:=g/i
{gozg-i0+0/\0§0<l.0}

A procedure that divides g by i/ and returns the remainder.
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Procedure Calls %

A call of p provides actual input argument e and output variable x.
x = p(e)

Similar to assignment statement; we thus first give an alternative
(equivalent) version of the assignment rule.

Original:
{D(e) A Qle/x]}
X =€
{Q}
Alternative:
{D(e) N¥X' : X' = e = Q[X'/x]}
x:=e
{Q}

The new value of x is given name x’ in the precondition.
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Procedure Calls E {

From this, we can derive a rule for the correctness of procedure calls.

{D(e) A Pre[e/i] A
vx', g’ Post[e/i,X’/o,g/go,(g)’/g] = Q[x'/x,g'/gl}
x = p(e

{@}

Pre[e/i] refers to the values of the actual argument e (rather than to
the formal parameter /).

x" and g’ denote the values of the vars x and g after the call.
Post|. . .] refers to the argument values before and after the call.
Q[x'/x, g’/ g] refers to the argument values after the call.

Modular reasoning: rule only relies on the specification of p, not on its
implementation.
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A

Corresponding Predicate Transformers v

wp(x = p(e), Q) =
D(e) A Pre[e/i] A
vx' g’ :
Post[e/i,x"/o,g/g0,8"/g]l = Q[X'/x, &' /g]

Sp(P,X = p(e)) =
Ix0, 80 :
Plx/y,80/8] N
(Prele[xo/x, 80/8]/i,80/g] = Poste[xa/x, 80/8]/i,x/0])

Explicit naming of old/new values required.
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Example .E "

Procedure specification:
global g
requires g > 0A i >0
ensures gp =g -I+oN0<o<i
o=p(i){o:=g%i; g:=g/i}
Procedure call:
{g>0Ag=NAb>0}
x=p(b+1)
{g-(b+1)<N<(g+1)-(b+1)}
To be proved:
g>0Ng=NAb>0=
D(b+1)Ag>0Ab+1>0A
vx', g’
g=g (b+1)+xN0<X' <b+1=
g (b+1)<N<(g'+1)-(b+1)
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