Non-emptyness Check for Generalized Büchi Automata Master Thesis Topic

Sütő Ágoston

Research Institute for Symbolic Computation

Thesis supervisor: Prof. Wolfgang Schreiner

Previously...

Discussed last time:

- What is model checking
- RISCAL software system
- Kripke-structures and LTL
- Generalized Büchi Automata
- A concrete approach for automaton-based model checking

Next up

Will be discussed today:

- It's alive!
- But the original approach wasn't very good
- How it was improved
- Why it's still not very good
- How it will be improved further

Demo

DEMO

Automaton based model checking (as described last time)

Definition

Model checking problem

Given a Kripke-structure $K = (S, I, T, \mathcal{L})$ and an LTL formula f determine whether $K \models f$, and if not, provide a trace π of K such that $\pi \not\models f$.

- Negate the formula and preprocess it
- ② Transform this formula into an LGBA $\mathcal{A}_{\neg f}$
- **③** Given the Kripke-structure $K = (S, I, T, \mathcal{L})$ of the system, construct LGBA $\mathcal{A}_K = (S, I, 2^{\mathcal{P}}, \mathcal{L}', T, \emptyset)$ with $\mathcal{L}'(s) = \{\mathcal{L}(s)\}$ for any $s \in S$.
- **②** Construct the automaton which accepts the intersection of the languages of $\mathcal{A}_{\neg f}$ and \mathcal{A}_{K}
- Transform the resulting LGBA to a simple Büchi automaton
- Check if the language of the resulting automaton is empty. If so, the property holds.

Automaton based model checking (as described last time)

Definition

Model checking problem

Given a Kripke-structure $K = (S, I, T, \mathcal{L})$ and an LTL formula f determine whether $K \models f$, and if not, provide a trace π of K such that $\pi \not\models f$.

- $lue{1}$ Negate the formula and preprocess it \checkmark
- ② Transform this formula into an LGBA $\mathcal{A}_{\neg f}$ ✓
- **③** Given the Kripke-structure $K = (S, I, T, \mathcal{L})$ of the system, construct LGBA $\mathcal{A}_K = (S, I, 2^{\mathcal{P}}, \mathcal{L}', T, \emptyset)$ with $\mathcal{L}'(s) = \{\mathcal{L}(s)\}$ for any $s \in S$. ✓
- **②** Construct the automaton which accepts the intersection of the languages of $\mathcal{A}_{\neg f}$ and \mathcal{A}_{K} \checkmark
- Transform the resulting LGBA to a simple Büchi automaton
- Oheck if the language of the resulting automaton is empty. If so, the property holds.

Automaton based model checking (as described last time)

Definition

Model checking problem

Given a Kripke-structure $K = (S, I, T, \mathcal{L})$ and an LTL formula f determine whether $K \models f$, and if not, provide a trace π of K such that $\pi \not\models f$.

- $lue{1}$ Negate the formula and preprocess it \checkmark
- ② Transform this formula into an LGBA $\mathcal{A}_{\neg f}$ ✓
- **③** Given the Kripke-structure $K = (S, I, T, \mathcal{L})$ of the system, construct LGBA $\mathcal{A}_K = (S, I, 2^{\mathcal{P}}, \mathcal{L}', T, \emptyset)$ with $\mathcal{L}'(s) = \{\mathcal{L}(s)\}$ for any $s \in S$. ✓
- **©** Construct the automaton which accepts the intersection of the languages of $\mathcal{A}_{\neg f}$ and \mathcal{A}_{K} \checkmark
- Transform the resulting LGBA to a simple Büchi automaton X
- Check if the language of the resulting automaton is empty. If so, the property holds.

Simple emptiness check for Büchi automata

```
function isLanguageEmpty(initialStates, acceptingStates) {
    S_1: stack of states = stack(initialStates)
    S_2: stack of states = \emptyset
    M_1, M_2: sets of states = \emptyset
    while (S_1 \neq \emptyset) {
         x = S_1 \cdot top()
         if (there is a state y \in x. next with y \notin M_1) {
              M_1 = M_1 \cup \{y\}
              S_1 . push (y)
         } else {
              S_1 . pop()
              if (x ∈ acceptingStates) {
                   S_2 . push (x)
                   while (S_2 \neq \emptyset) {
                        v = S_2 \cdot top()
                        if (x \in v.next) {
                             return false
                         } else if (there is a state w \in v.next with w \notin M_2) {
                             M_2 = M_2 \cup \{w\}
                             S_2. push (w)
                         } else {
                             S_2 . pop()
    return true
```

Emptyness check comparisons

Fig. 4. Performances

Figure: Comparison of emptyness check algorithms, according to Gaiser & Schwoon 2009 [1]

Definition

A strongly connected component (SCC) of a directed graph $\mathcal{G}=(V,E)$ is a subset $S\subseteq V$ such that for any pair $s,t\in S$ we have that $s\to_S^*t$. An SCC is called *trivial* if $S=\{s\}$ and $s\not\to s$.

Definition

A strongly connected component (SCC) of a directed graph $\mathcal{G}=(V,E)$ is a subset $S\subseteq V$ such that for any pair $s,t\in S$ we have that $s\to_S^*t$. An SCC is called *trivial* if $S=\{s\}$ and $s\not\to s$.

Recall:

Proposition

The language described by a Büchi automaton $\mathcal{A}=(A,I,\Sigma,\mathcal{L},\rightarrow,F)$ is non-empty if and only if there exists a state $s\in F$ such that $s_I\to^*s$ for some $s_I\in I$ and $s\to^+s$.

Using SCCs this can be reformulated as:

Proposition

The language described by a Büchi automaton $\mathcal{A}=(A,I,\Sigma,\mathcal{L},\to,F)$ is non-empty if and only if there exists an SCC \mathcal{C} reachable from I such that $\mathcal{C}\cap F\neq\emptyset$.

Using SCCs this can be reformulated as:

Proposition

The language described by a Büchi automaton $\mathcal{A}=(A,I,\Sigma,\mathcal{L},\rightarrow,F)$ is non-empty if and only if there exists an SCC \mathcal{C} reachable from I such that $\mathcal{C}\cap F\neq\emptyset$.

For generalized Büchi automata the acceptance condition using reachability is harder to state, but using SCCs we have:

Proposition

The language described by a generalized Büchi automaton $\mathcal{A} = (A, I, \Sigma, \mathcal{L}, \rightarrow, \mathcal{F})$ is non-empty if and only if there exists an SCC \mathcal{C} reachable from I such that $\mathcal{C} \cap F \neq \emptyset$ for all $F \in \mathcal{F}$.

The ASCC algorithm

- The ASCC algorithm works by finding the strongly connected components of the automaton and checking if they contain at least one state in each final set.
- Avoids a potential polynomial blowup of states.
- In reality most properties have a corresponding automaton with one or zero final sets (90-95% according to [2], 92% in the test-set of [1]), so it doesn't help that much.
- Still it simplifies the implementation a bit.
- It is an improvement over Couvreur's algorithm [3]

The ASCC algorithm

```
procedure couv(s_i) {
    count: integer := 0;
    roots: stack(pair(state, set(integer))) := \emptyset
    active: stack(state) := \emptyset
    call couv_dfs(s1)
procedure couv_dfs(s) {
    count := count + 1
    s.dfsnum := count
    s.current := true
    roots.push(s, A(s))
    active.push(s)
    for (all t successors of s) {
         if (t.dfsnum = 0) then call couv_dfs(t)
         else if (t.current) {
             B: set of integers := \emptyset
             repeat {
                 (u, C) := roots.pop()
                 \dot{B} := \dot{B} \cup C
                  if (B = K) then report cycle
             } until (u.dfsnum < t.dfsnum)</pre>
    if (roots.top() = (s, _)) {
         roots.pop()
         repeat {
             u: state := active.pop()
             u.current := false
         \{until (u = s)\}
```

How it works

Figure: Shape of the active graph taken from [1]

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Why it is still not very good

- ASCC (as described) does not provide a clear way to determine the violating trace.
- Converting from recursive to iterative (even by just simulating the recursion) would immediately give us the trace leading to the SCC.
- On the programming side this and a few other things need to be cleaned up.
- The implementation of fairness conditions is still missing.
- On the research side optimizations (partial order reduction) are still missing.

Bibliography

- [1] Andreas Gaiser and Stefan Schwoon. Comparison of Algorithms for Checking Emptiness on Buechi Automata. 2009. DOI: 10.48550/ARXIV.0910.3766. URL: https://arxiv.org/abs/0910.3766.
- [2] Ivana Cerna and Radek Pelánek. "Relating Hierarchy of Temporal Properties to Model Checking". In: vol. 2747. Aug. 2003, pp. 318–327. ISBN: 978-3-540-40671-6. DOI: 10.1007/978-3-540-45138-9_26.
- [3] Jean-Michel Couvreur. "On-the-Fly Verification of Linear Temporal Logic." In: Sept. 1999, pp. 253–271. ISBN: 978-3-540-66587-8. DOI: 10.1007/3-540-48119-2_16.