Non-emptyness Check for Generalized Biichi Automata
Master Thesis Topic

Siitd Agoston

Research Institute for Symbolic Computation

Thesis supervisor: Prof. Wolfgang Schreiner

May 15, 2022

Siité Agoston (RISC) LTL Model Checking May 15, 2022 1/14

Previously...

Discussed last time:
@ What is model checking

RISCAL software system

Kripke-structures and LTL

@ Generalized Biichi Automata

@ A concrete approach for automaton-based model checking

Siité Agoston (RISC) LTL Model Checking May 15, 2022 2/14

Next up

Will be discussed today:
e It's alive!
@ But the original approach wasn't very good
@ How it was improved
@ Why it's still not very good

@ How it will be improved further

Siité Agoston (RISC) LTL Model Checking May 15, 2022 3/14

Demo

DEMO

Siité Agoston (RISC) LTL Model Checking May 15, 2022 4/14

Automaton based model checking (as described last time)

Definition

Model checking problem

Given a Kripke-structure K= (S, /1, T, £) and an LTL formula f determine
whether K |= f, and if not, provide a trace 7 of K such that 7 [~ f.

© Negate the formula and preprocess it

@ Transform this formula into an LGBA A_¢

© Given the Kripke-structure K= (S, I, T, L) of the system, construct
LGBA Ak = (S,1,27,£', T,0) with £'(s) = {L(s)} for any s€ S.

@ Construct the automaton which accepts the intersection of the
languages of A_rand Ak

© Transform the resulting LGBA to a simple Biichi automaton

Q Check if the language of the resulting automaton is empty. If so, the
property holds.

Siité Agoston (RISC) LTL Model Checking May 15, 2022 5/14

Automaton based model checking (as described last time)

Definition

Model checking problem

Given a Kripke-structure K= (S, /1, T, £) and an LTL formula f determine
whether K |= f, and if not, provide a trace 7 of K such that 7 [~ f.

© Negate the formula and preprocess it

@ Transform this formula into an LGBA A_¢

© Given the Kripke-structure K= (S, I, T, L) of the system, construct
LGBA Ak = (S,1,27,£', T,0) with £'(s) = {L(s)} for any s€ S.

@ Construct the automaton which accepts the intersection of the
languages of A_rand Ak

© Transform the resulting LGBA to a simple Biichi automaton

Q Check if the language of the resulting automaton is empty. If so, the
property holds.

Siité Agoston (RISC) LTL Model Checking May 15, 2022 5/14

Automaton based model checking (as described last time)

Definition

Model checking problem

Given a Kripke-structure K= (S, /1, T, £) and an LTL formula f determine
whether K |= f, and if not, provide a trace 7 of K such that 7 [~ f.

© Negate the formula and preprocess it

@ Transform this formula into an LGBA A_¢

© Given the Kripke-structure K= (S, I, T, L) of the system, construct
LGBA Ak = (S,1,27,£', T,0) with £'(s) = {L(s)} for any s€ S.

@ Construct the automaton which accepts the intersection of the
languages of A_rand Ak

© Transform the resulting LGBA to a simple Biichi automaton X

Q Check if the language of the resulting automaton is empty. If so, the
property holds. X

Siité Agoston (RISC) LTL Model Checking May 15, 2022 5/14

Simple emptiness check for Biichi automata

function isLanguageEmpty(initialStates, acceptingStates) {
Sp: stack of states = stack(initialStates)

Sp: stack of states =0

My, M,: sets of states = (

while (51 # 0) {
x = §1.top()
if (there is a state y € x.next with y ¢ M;) {
My = M U {y}
Sp.push(y)
} else {

S1-pop()
if (x € acceptingStates) {
S, . push(x)
while (S # 0) {
v =5.top()
if (x € vionext) {

return false
} else if (there is a state w € v.next with w ¢ M) {

My = My U {w}
S, . push (w)

} else {
Sz.pop ()

}

return true

}

Siité Agoston (RISC) LTL Model Checking

May 15, 2022

6/14

Emptyness check comparisons

algorithm | run-time

ASCC 67.0%

Can work directly GV 69.2 %

with GBAs! AND 69.7 % The one on the previous
SE 9()3 (y() slide is even worse!

HPY 100.0 % e /
9 0

C99 128.3 % The one used in SPIN

(at least back in 2009)

Fig. 4. Performances

Figure: Comparison of emptyness check algorithms,
according to Gaiser & Schwoon 2009 [1]

Siité Agoston (RISC) LTL Model Checking May 15, 2022 7/14

Strongly connected components

Definition

A strongly connected component (SCC) of a directed graph G = (V, E) is
a subset S C V'such that for any pair s,t € S we have that s =% t.

An SCC is called trivial if S= {s} and s /4 s.

Siité Agoston (RISC) LTL Model Checking May 15, 2022 8/14

Strongly connected components

Definition

A strongly connected component (SCC) of a directed graph G = (V, E) is
a subset S C V'such that for any pair s,t € S we have that s =% t.

An SCC is called trivial if S= {s} and s /4 s.

Recall:

Proposition

The language described by a Biichi automaton A = (A, ,X,L,—,F) is
non-empty if and only if there exists a state s € F such that s; —* s for
some s; € | and s =7 s.

Siité Agoston (RISC) LTL Model Checking May 15, 2022 8/14

Strongly connected components

Using SCCs this can be reformulated as:

Proposition

The language described by a Biichi automaton A = (A, X, L,—,F) is
non-empty if and only if there exists an SCC C reachable from | such that

CNF#Q.

Siité Agoston (RISC) LTL Model Checking May 15, 2022 9/14

Strongly connected components

Using SCCs this can be reformulated as:

Proposition

The language described by a Biichi automaton A = (A, X, L,—,F) is
non-empty if and only if there exists an SCC C reachable from | such that
CNF#0.

For generalized Biichi automata the acceptance condition using
reachability is harder to state, but using SCCs we have:

Proposition

The language described by a generalized Biichi automaton

A= (A LX, L, —,F) is non-empty if and only if there exists an SCC C
reachable from | such that CN F # () for all F € F.

Siité Agoston (RISC) LTL Model Checking May 15, 2022 9/14

The ASCC algorithm

@ The ASCC algorithm works by finding the strongly connected
components of the automaton and checking if they contain at least
one state in each final set.

@ Avoids a potential polynomial blowup of states.

@ In reality most properties have a corresponding automaton with one
or zero final sets (90-95% according to [2], 92% in the test-set of [1]),
so it doesn't help that much.

o Still it simplifies the implementation a bit.

e It is an improvement over Couvreur's algorithm [3]

Siité Agoston (RISC) LTL Model Checking May 15, 2022 10/14

The ASCC algorithm

procedure couv(s;) {

count: integer := O0;
roots: stack(pair(state, set(integer))) := 0
active: stack(state) := 0
call couv_dfs(s))
}
procedure couv_dfs(s) {
count := count + 1
s.dfsnum := count
s.current = true
roots.push(s, A(s))
active.push(s)
for (all t successors of s)
if (t.dfsnum = 0) then call couv_dfs(t)
else if (t.current) {
B: set of integers := 0
repeat {
(u, C) := roots.pop()
B:=BUC
if (B =K) then report cycle
} until (u.dfsnum < t.dfsnum)
}
if (roots.top() = (s, _)) {
roots.pop()
repeat {
u: state := active.pop()
u.current := false
} until (u=s)
}

Siité Agoston (RISC) LTL Model Checking May 15, 2022 11/14

How it works

root labelled with root labelled with

some number 1 some number j search path
@ ,
labelled with numbers wivial SCC with
SCC of between i andj accepting state

with additional states

Figure: Shape of the active graph taken from [1]

Siité Agoston (RISC) LTL Model Checking May 15, 2022 12/14

Why it is still not very good

@ ASCC (as described) does not provide a clear way to determine the
violating trace.

e Converting from recursive to iterative (even by just simulating the
recursion) would immediately give us the trace leading to the SCC.

@ On the programming side this and a few other things need to be
cleaned up.

@ The implementation of fairness conditions is still missing.

@ On the research side optimizations (partial order reduction) are still
missing.

Siité Agoston (RISC) LTL Model Checking May 15, 2022 13/14

Bibliography

[1] Andreas Gaiser and Stefan Schwoon. Comparison of Algorithms for
Checking Emptiness on Buechi Automata. 2009. DOI:
10.48550/ARXIV.0910.3766. URL:
https://arxiv.org/abs/0910.3766.

[2] Ivana Cerna and Radek Pelanek. "Relating Hierarchy of Temporal
Properties to Model Checking”. In: vol. 2747. Aug. 2003, pp. 318-327.
ISBN: 978-3-540-40671-6. DOT: 10.1007/978-3-540-45138-9_26.

[3] Jean-Michel Couvreur. “On-the-Fly Verification of Linear Temporal
Logic.”. In: Sept. 1999, pp. 253-271. 1SBN: 978-3-540-66587-8. DOI:
10.1007/3-540-48119-2_16.

Siité Agoston (RISC) LTL Model Checking May 15, 2022 14 /14

https://doi.org/10.48550/ARXIV.0910.3766
https://arxiv.org/abs/0910.3766
https://doi.org/10.1007/978-3-540-45138-9_26
https://doi.org/10.1007/3-540-48119-2_16

	Introduction
	Automaton-based model checking approach
	References

