
Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

MATHEMATICAL MODELLING OF
RELATIONAL DATABASE IN RISCAL

Joachim Borya

Johannes Kepler Universität

March 8th, 2022

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

The goal
In order to see the actual use of the following considerations,
we take an actual SQL database as a model.

Figure 1: DDL script

BEGIN TRANSACTION;

CREATE TABLE IF NOT EXISTS ‘s‘ (

‘Field1‘ INTEGER,

‘Field2‘ INTEGER

);

INSERT INTO ‘s‘ VALUES (0,0);

INSERT INTO ‘s‘ VALUES (0,1);

INSERT INTO ‘s‘ VALUES (1,0);

CREATE TABLE IF NOT EXISTS ‘r‘ (

‘Field1‘ INTEGER,

‘Field2‘ INTEGER,

‘Field3‘ INTEGER

);

INSERT INTO ‘r‘ VALUES (1,1,0);

INSERT INTO ‘r‘ VALUES (0,1,0);

INSERT INTO ‘r‘ VALUES (0,0,0);

INSERT INTO ‘r‘ VALUES (1,1,1);

COMMIT;

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

The goal

Later on, we check if our algebraic approach leads to the
same result as the query below.

Figure 2: Query

SELECT distinct *

FROM

(SELECT r.Field1 as ’a’, r.Field3 as ’b’

FROM r WHERE r.Field2 = 1) as ’t’

INNER JOIN s

ON s.Field1 = t.a;

Table 1: Output

1 0 1 0
0 0 0 0
0 0 0 1
1 1 1 0

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

Algebra

▶ Theoretical foundation for the implementation in
RISCAL

▶ The algebra we construct consists of ...
▶ a domain Relation
▶ and operations with signatures of the form

∗ → Relation.

▶ For each operation we also define suitable preconditions.

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

Domain

▶ The domain will be parametrized by constants M,N ∈ N
where M is the maximum cardinality of relations and N
the maximum length of tuples.

▶ Let Row be the set of all functions {0, . . . ,N} → {0, 1}.
▶ The domain Relation consists of all

⟨n, r⟩ ∈ {0, . . . ,N} × P(Row) that satisfy
▶ |r | ≤ M
▶ and ∀t ∈ r , i ∈ {n, . . . ,N − 1} : t[i] = 0. Note that

{n, . . . ,N − 1} = ∅ for n > N − 1.

▶ Notation: Len(s) := n and Tup(s) = r for s ∈ Relation

▶ Note: As a means of abstraction the ”cells” of a ”table”
contain only bit values.

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

Operations

▶ The actual operations we will construct are cartesian,
select, project, join, union, intersect and
minus.

▶ We will also have a concat function, which is not an
actual operation. It will help to introduce cartesian.

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

concat

▶ Description: The function concatenates two rows.

▶ Signature: Row× Row× {0, . . . ,N} × {0, . . . ,N} → Row

Definition

concat(t1, t2, n1, n2) := n 7→


t1(n), if n < n1

t2(n − n1), if n1 ≤ n < n1 + n2

0, else

▶ Precondition: The parameters n1, n2 denote the actual
length of a row. Therefore we need to ensure that
n1 + n2 ≤ N.

RISCAL

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

cartesian

▶ Description: The function constructs the cartesian
product of two relations.

▶ Signature: Relation× Relation → Relation

Definition

cartesian(r1, r2) = r :⇔
Tup(r) = {concat(t1, t2) : t1 ∈ Tup(r1), t2 ∈ Tup(r2)} and
Len(r) = Len(r1) + Len(r2).

▶ Precondition: The cartesian product is a relation where
the rows have the length Len(r1) + Len(r2), therefore
we need to ensure that Len(r1) + Len(r2) ≤ N. The
maximum cardinality of this relation is
|Tup(r1)| · |Tup(r2)|, therefore we need to ensure that
|Tup(r1)| · |Tup(r2)| ≤ M.

RISCAL

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

select

▶ Description: The function filters out rows whose
columns have a certain value.

▶ Signature:
Relation× {0, . . . ,N − 1} × {0, 1} → Relation

Definition

select(r , a, e) := ⟨Len(r), {t ∈ r : t(a) = e}⟩

▶ Precondition: We need to ensure that the column
indicator a is not greater or equal the length of the rows
of r , i.e. we need the precondition a < Len(r).

RISCAL

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

project
▶ Description: The function can be used to create a new

relation consisting of a rearrangement of certain
columns of the previous relation.

▶ Signature:

Relation× {0, . . . ,N}{0,...,N−1} → Relation

Definition

project(r , c) = s :⇔ Len(s) = |{i ∈ {0, . . . ,N − 1} : c(i) ̸= N}|
and
∀tr ∈ Tup(r)∃ts ∈ Tup(s)∀i ∈ {0, . . . , Len(s)−1} : ts(i) = tr (c(i))

▶ Precondition: The parameter c should denote a choice
of valid column indices in a certain order. A convenient
precondition is given by

∃i ∈ {0, . . . ,N − 1}∀j ∈ {0, . . . ,N − 1} :

(j > i ⇒ c(i) = N) ∧ (j ≤ i ⇒ c(i) < Len(r))

RISCAL

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

join

▶ Description: The function filters out all rows in the
cartesian product that have matching values in two
certain columns.

▶ Signature: Relation2 × {0, . . . ,N − 1}2 → Relation

Definition
join(r1, r2, n1, n2) = s :⇔ Len(s) = Len(r1) + Len(r2) and Tup(s) =
{concat(t1, t2, Len(r1), Len(r2)) : t1 ∈ Tup(r1), t2 ∈ Tup(r2), t1(n1) = t2(n2)}

▶ Precondition: Firstly n1, n2 need to denote valid
columns, therefore we need a precondition
n1 < Len(r1), n2 < Len(r2). Secondly, just as in the
cartesian product we need the preconditions
Len(r1) + Len(r2) ≤ N and |Tup(r1)| · |Tup(r2)| ≤ M.

RISCAL

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

Set operations

▶ Description: The functions perform the regular set
operations on relations.

▶ Signature: Relation× Relation → Relation

Definition

union(r1, r2) := ⟨Len(r1),Tup(r1) ∪ Tup(r2)⟩
intersect(r1, r2) := ⟨Len(r1),Tup(r1) ∩ Tup(r2)⟩
minus(r1, r2) := ⟨Len(r1),Tup(r1)\Tup(r2)⟩

▶ For each of the three operations the relations r1, r2 need
to be union-compatible, i.e. Len(r1) = Len(r2). In case
of union we additionally have to ensure that
|Tup(r1)|+ |Tup(r2)| ≤ M.

RISCAL

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

Verification idea

1. Encoding of ...
▶ the database
▶ and the query

... in a single RISCAL procedure.

2. We prove as a theorem, that our model produces the
same output as the query.

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

Encoding of the query

Figure 3: RISCAL procedure query()

proc query():Relation {

var dum:Map[Attribute,Element] := Map[Attribute,Element](0);

var r1:Relation := ⟨len: 3, tup: choose s:Set[Row] with |s|=0⟩;
var r2:Relation := ⟨len: 2, tup: choose s:Set[Row] with |s|=0⟩;

r1.tup := r1.tup ∪ {dum};

r2.tup := r2.tup ∪ {dum};

dum[1] := 1;

r1.tup := r1.tup ∪ {dum};

r2.tup := r2.tup ∪ {dum};

dum[0] := 1;

r1.tup := r1.tup ∪ {dum};

dum[1] := 0;

r2.tup := r2.tup ∪ {dum};

dum[1] := 1;

dum[2] := 1;

r1.tup := r1.tup ∪ {dum};

print r1;

print r2;

var columns:Array[N,Length] := Array[N,Length](N);

columns[0] := 0;

columns[1] := 2;

print columns;

return join(project2(select(r1,1,1),columns),r2,0,0);

}

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

Results

Figure 4: RISCAL procedure result()

proc result():Relation {

var dum:Map[Attribute,Element] := Map[Attribute,Element](0);

var r:Relation := ⟨len: 4, tup: choose s:Set[Row] with |s|=0⟩;

r.tup := r.tup ∪ {dum};

dum[3] := 1;

r.tup := r.tup ∪ {dum};

dum[3] := 0;

dum[0] := 1;

dum[2] := 1;

r.tup := r.tup ∪ {dum};

dum[1] := 1;

r.tup := r.tup ∪ {dum};

return r;

}

theorem correct_result() ⇔ query() = result();

In RISCAL it can be verified that the theorem above is true.

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

concat Go back

Figure 5: RISCAL implementation of concat

fun concat1(t1:Row, t2:Row, n1:Length, n2:Length):Row

requires n1 + n2 ≤ N;

= choose t:Row with ∀ i:Attribute. (

if i < n1 then t[i] = t1[i]

else if i ≥ n1 ∧ i < n1+n2 then t[i] = t2[i-n1]

else t[i] = 0

);

proc concat2(t1:Row, t2:Row, n1:Length, n2:Length):Row

requires n1 + n2 ≤ N; {

var t:Row = Array[N,Element](0);

for var i:Length:=0; i<n1; i:=i+1 do {

t[i] := t1[i];

}

for var i:Length:=n1; i<n1+n2; i:=i+1 do {

t[i] := t2[i-n1];

}

return t;

}

theorem concat_equiv(t1:Row, t2:Row, n1:Length, n2:Length)

requires n1 + n2 ≤ N; ⇔
concat1(t1,t2,n1,n2) = concat2(t1,t2,n1,n2);

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

cartesian Go back

Figure 6: RISCAL implementation of cartesian

fun cartesian(r1:Relation, r2:Relation):Relation

requires r1.len+r2.len ≤ N ∧ |r1.tup|*|r2.tup| ≤ M;

= ⟨len: r1.len+r2.len, tup: concat1(t1,t2,r1.len,r2.len) | t1∈r1.tup, t2∈r2.tup⟩;

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

select Go back

Figure 7: RISCAL implementation of select

fun select(r:Relation, a:Attribute, e:Element):Relation

requires a < r.len;

= ⟨len: r.len, tup: t | t∈r.tup with t[a] = e⟩;

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

project Go back

Figure 8: RISCAL implementation of project

fun project1(r:Relation, columns:Array[N,Length]):Relation

requires (∃ i:Attribute. ∀ j:Attribute.

(j>i ⇒ columns[j] = N) ∧ (j≤i ⇒ columns[j] < r.len));

= choose s:Relation with s.len = |i | i:Attribute with columns[i] ̸= N| ∧
(∀ tr:Row. tr∈r.tup ⇒
∃ ts:Row. ts∈s.tup ∧ ∀ i:Attribute. i < s.len ⇒ ts[i]=tr[columns[i]]);

proc project2(r:Relation, columns:Array[N,Length]):Relation

requires (∃ i:Attribute. ∀ j:Attribute.

(j>i ⇒ columns[j] = N) ∧ (j≤i ⇒ columns[j] < r.len)); {

var l:Length := |i | i:Attribute with columns[i] ̸= N|;

var q:Relation := ⟨len: l, tup: choose s:Set[Row] with |s|=0⟩;
var s:Set[Row] := r.tup;

choose t ∈ s do {

s := s \ {t};

var tn:Row := Array[N,Element](0);

var j:Length := 0;

for var i:Length := 0; i<N; i:=i+1 do {

if columns[i] ̸= N then {

tn[j] := t[columns[i]];

j := j+1;

}

}

q.tup := q.tup ∪ {tn};

}

return q;

}

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

join Go back

Figure 9: RISCAL implementation of join

fun join(r1:Relation, r2:Relation, n1:Attribute, n2:Attribute):Relation

requires n1<r1.len ∧ n2<r2.len ∧ r1.len+r2.len ≤ N ∧ |r1.tup|*|r2.tup| ≤ M;

= ⟨len: r1.len+r2.len,

tup: concat1(t1,t2,r1.len,r2.len) | t1∈r1.tup, t2∈r2.tup with t1[n1] = t2[n2]⟩;

Mathematical
Modelling of
Relational

Databases in
RISCAL

Joachim Borya

The goal

Algebra

Domain

Operations

concat

cartesian

select

project

join

Set operations

RISCAL

Verification idea

Encoding of the query

Results

Appendix

Set operations Go back

Figure 10: RISCAL implementation of the set operation

pred union_compatible(r1:Relation, r2:Relation) ⇔ r1.len=r2.len;

fun rUnion(r1:Relation, r2:Relation):Relation

requires union_compatible(r1,r2) ∧ |r1.tup| + |r2.tup| ≤ M;

= ⟨len: r1.len, tup: r1.tup ∪ r2.tup⟩;

fun rIntersect(r1:Relation, r2:Relation):Relation

requires union_compatible(r1,r2);

= ⟨len: r1.len, tup: r1.tup ∩ r2.tup⟩;

fun rMinus(r1:Relation, r2:Relation):Relation

requires union_compatible(r1,r2);

= ⟨len: r1.len, tup: r1.tup \ r2.tup⟩;

	The goal
	Algebra
	Domain
	Operations

	RISCAL
	Verification idea
	Encoding of the query
	Results

	Appendix

