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The goal
In order to see the actual use of the following considerations,
we take an actual SQL database as a model.

Figure 1: DDL script

BEGIN TRANSACTION;

CREATE TABLE IF NOT EXISTS ‘s‘ (

‘Field1‘ INTEGER,

‘Field2‘ INTEGER

);

INSERT INTO ‘s‘ VALUES (0,0);

INSERT INTO ‘s‘ VALUES (0,1);

INSERT INTO ‘s‘ VALUES (1,0);

CREATE TABLE IF NOT EXISTS ‘r‘ (

‘Field1‘ INTEGER,

‘Field2‘ INTEGER,

‘Field3‘ INTEGER

);

INSERT INTO ‘r‘ VALUES (1,1,0);

INSERT INTO ‘r‘ VALUES (0,1,0);

INSERT INTO ‘r‘ VALUES (0,0,0);

INSERT INTO ‘r‘ VALUES (1,1,1);

COMMIT;
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The goal

Later on, we check if our algebraic approach leads to the
same result as the query below.

Figure 2: Query

SELECT distinct *

FROM

(SELECT r.Field1 as ’a’, r.Field3 as ’b’

FROM r WHERE r.Field2 = 1) as ’t’

INNER JOIN s

ON s.Field1 = t.a;

Table 1: Output

1 0 1 0
0 0 0 0
0 0 0 1
1 1 1 0
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Algebra

▶ Theoretical foundation for the implementation in
RISCAL

▶ The algebra we construct consists of ...
▶ a domain Relation
▶ and operations with signatures of the form

∗ → Relation.

▶ For each operation we also define suitable preconditions.
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Domain

▶ The domain will be parametrized by constants M,N ∈ N
where M is the maximum cardinality of relations and N
the maximum length of tuples.

▶ Let Row be the set of all functions {0, . . . ,N} → {0, 1}.
▶ The domain Relation consists of all

⟨n, r⟩ ∈ {0, . . . ,N} × P(Row) that satisfy
▶ |r | ≤ M
▶ and ∀t ∈ r , i ∈ {n, . . . ,N − 1} : t[i ] = 0. Note that

{n, . . . ,N − 1} = ∅ for n > N − 1.

▶ Notation: Len(s) := n and Tup(s) = r for s ∈ Relation

▶ Note: As a means of abstraction the ”cells” of a ”table”
contain only bit values.
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Operations

▶ The actual operations we will construct are cartesian,
select, project, join, union, intersect and
minus.

▶ We will also have a concat function, which is not an
actual operation. It will help to introduce cartesian.
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concat

▶ Description: The function concatenates two rows.

▶ Signature: Row× Row× {0, . . . ,N} × {0, . . . ,N} → Row

Definition

concat(t1, t2, n1, n2) := n 7→


t1(n), if n < n1

t2(n − n1), if n1 ≤ n < n1 + n2

0, else

▶ Precondition: The parameters n1, n2 denote the actual
length of a row. Therefore we need to ensure that
n1 + n2 ≤ N.

RISCAL
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cartesian

▶ Description: The function constructs the cartesian
product of two relations.

▶ Signature: Relation× Relation → Relation

Definition

cartesian(r1, r2) = r :⇔
Tup(r) = {concat(t1, t2) : t1 ∈ Tup(r1), t2 ∈ Tup(r2)} and
Len(r) = Len(r1) + Len(r2).

▶ Precondition: The cartesian product is a relation where
the rows have the length Len(r1) + Len(r2), therefore
we need to ensure that Len(r1) + Len(r2) ≤ N. The
maximum cardinality of this relation is
|Tup(r1)| · |Tup(r2)|, therefore we need to ensure that
|Tup(r1)| · |Tup(r2)| ≤ M.

RISCAL
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select

▶ Description: The function filters out rows whose
columns have a certain value.

▶ Signature:
Relation× {0, . . . ,N − 1} × {0, 1} → Relation

Definition

select(r , a, e) := ⟨Len(r), {t ∈ r : t(a) = e}⟩

▶ Precondition: We need to ensure that the column
indicator a is not greater or equal the length of the rows
of r , i.e. we need the precondition a < Len(r).

RISCAL
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project
▶ Description: The function can be used to create a new

relation consisting of a rearrangement of certain
columns of the previous relation.

▶ Signature:

Relation× {0, . . . ,N}{0,...,N−1} → Relation

Definition

project(r , c) = s :⇔ Len(s) = |{i ∈ {0, . . . ,N − 1} : c(i) ̸= N}|
and
∀tr ∈ Tup(r)∃ts ∈ Tup(s)∀i ∈ {0, . . . , Len(s)−1} : ts(i) = tr (c(i))

▶ Precondition: The parameter c should denote a choice
of valid column indices in a certain order. A convenient
precondition is given by

∃i ∈ {0, . . . ,N − 1}∀j ∈ {0, . . . ,N − 1} :

(j > i ⇒ c(i) = N) ∧ (j ≤ i ⇒ c(i) < Len(r))

RISCAL
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join

▶ Description: The function filters out all rows in the
cartesian product that have matching values in two
certain columns.

▶ Signature: Relation2 × {0, . . . ,N − 1}2 → Relation

Definition
join(r1, r2, n1, n2) = s :⇔ Len(s) = Len(r1) + Len(r2) and Tup(s) =
{concat(t1, t2, Len(r1), Len(r2)) : t1 ∈ Tup(r1), t2 ∈ Tup(r2), t1(n1) = t2(n2)}

▶ Precondition: Firstly n1, n2 need to denote valid
columns, therefore we need a precondition
n1 < Len(r1), n2 < Len(r2). Secondly, just as in the
cartesian product we need the preconditions
Len(r1) + Len(r2) ≤ N and |Tup(r1)| · |Tup(r2)| ≤ M.

RISCAL
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Set operations

▶ Description: The functions perform the regular set
operations on relations.

▶ Signature: Relation× Relation → Relation

Definition

union(r1, r2) := ⟨Len(r1),Tup(r1) ∪ Tup(r2)⟩
intersect(r1, r2) := ⟨Len(r1),Tup(r1) ∩ Tup(r2)⟩
minus(r1, r2) := ⟨Len(r1),Tup(r1)\Tup(r2)⟩

▶ For each of the three operations the relations r1, r2 need
to be union-compatible, i.e. Len(r1) = Len(r2). In case
of union we additionally have to ensure that
|Tup(r1)|+ |Tup(r2)| ≤ M.

RISCAL
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Verification idea

1. Encoding of ...
▶ the database
▶ and the query

... in a single RISCAL procedure.

2. We prove as a theorem, that our model produces the
same output as the query.
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Encoding of the query

Figure 3: RISCAL procedure query()

proc query():Relation {

var dum:Map[Attribute,Element] := Map[Attribute,Element](0);

var r1:Relation := ⟨len: 3, tup: choose s:Set[Row] with |s|=0⟩;
var r2:Relation := ⟨len: 2, tup: choose s:Set[Row] with |s|=0⟩;

r1.tup := r1.tup ∪ {dum};

r2.tup := r2.tup ∪ {dum};

dum[1] := 1;

r1.tup := r1.tup ∪ {dum};

r2.tup := r2.tup ∪ {dum};

dum[0] := 1;

r1.tup := r1.tup ∪ {dum};

dum[1] := 0;

r2.tup := r2.tup ∪ {dum};

dum[1] := 1;

dum[2] := 1;

r1.tup := r1.tup ∪ {dum};

print r1;

print r2;

var columns:Array[N,Length] := Array[N,Length](N);

columns[0] := 0;

columns[1] := 2;

print columns;

return join(project2(select(r1,1,1),columns),r2,0,0);

}
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Results

Figure 4: RISCAL procedure result()

proc result():Relation {

var dum:Map[Attribute,Element] := Map[Attribute,Element](0);

var r:Relation := ⟨len: 4, tup: choose s:Set[Row] with |s|=0⟩;

r.tup := r.tup ∪ {dum};

dum[3] := 1;

r.tup := r.tup ∪ {dum};

dum[3] := 0;

dum[0] := 1;

dum[2] := 1;

r.tup := r.tup ∪ {dum};

dum[1] := 1;

r.tup := r.tup ∪ {dum};

return r;

}

theorem correct_result() ⇔ query() = result();

In RISCAL it can be verified that the theorem above is true.
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concat Go back

Figure 5: RISCAL implementation of concat

fun concat1(t1:Row, t2:Row, n1:Length, n2:Length):Row

requires n1 + n2 ≤ N;

= choose t:Row with ∀ i:Attribute. (

if i < n1 then t[i] = t1[i]

else if i ≥ n1 ∧ i < n1+n2 then t[i] = t2[i-n1]

else t[i] = 0

);

proc concat2(t1:Row, t2:Row, n1:Length, n2:Length):Row

requires n1 + n2 ≤ N; {

var t:Row = Array[N,Element](0);

for var i:Length:=0; i<n1; i:=i+1 do {

t[i] := t1[i];

}

for var i:Length:=n1; i<n1+n2; i:=i+1 do {

t[i] := t2[i-n1];

}

return t;

}

theorem concat_equiv(t1:Row, t2:Row, n1:Length, n2:Length)

requires n1 + n2 ≤ N; ⇔
concat1(t1,t2,n1,n2) = concat2(t1,t2,n1,n2);
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cartesian Go back

Figure 6: RISCAL implementation of cartesian

fun cartesian(r1:Relation, r2:Relation):Relation

requires r1.len+r2.len ≤ N ∧ |r1.tup|*|r2.tup| ≤ M;

= ⟨len: r1.len+r2.len, tup: concat1(t1,t2,r1.len,r2.len) | t1∈r1.tup, t2∈r2.tup⟩;
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select Go back

Figure 7: RISCAL implementation of select

fun select(r:Relation, a:Attribute, e:Element):Relation

requires a < r.len;

= ⟨len: r.len, tup: t | t∈r.tup with t[a] = e⟩;
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project Go back

Figure 8: RISCAL implementation of project

fun project1(r:Relation, columns:Array[N,Length]):Relation

requires (∃ i:Attribute. ∀ j:Attribute.

(j>i ⇒ columns[j] = N) ∧ (j≤i ⇒ columns[j] < r.len));

= choose s:Relation with s.len = |i | i:Attribute with columns[i] ̸= N| ∧
(∀ tr:Row. tr∈r.tup ⇒
∃ ts:Row. ts∈s.tup ∧ ∀ i:Attribute. i < s.len ⇒ ts[i]=tr[columns[i]]);

proc project2(r:Relation, columns:Array[N,Length]):Relation

requires (∃ i:Attribute. ∀ j:Attribute.

(j>i ⇒ columns[j] = N) ∧ (j≤i ⇒ columns[j] < r.len)); {

var l:Length := |i | i:Attribute with columns[i] ̸= N|;

var q:Relation := ⟨len: l, tup: choose s:Set[Row] with |s|=0⟩;
var s:Set[Row] := r.tup;

choose t ∈ s do {

s := s \ {t};

var tn:Row := Array[N,Element](0);

var j:Length := 0;

for var i:Length := 0; i<N; i:=i+1 do {

if columns[i] ̸= N then {

tn[j] := t[columns[i]];

j := j+1;

}

}

q.tup := q.tup ∪ {tn};

}

return q;

}
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join Go back

Figure 9: RISCAL implementation of join

fun join(r1:Relation, r2:Relation, n1:Attribute, n2:Attribute):Relation

requires n1<r1.len ∧ n2<r2.len ∧ r1.len+r2.len ≤ N ∧ |r1.tup|*|r2.tup| ≤ M;

= ⟨len: r1.len+r2.len,

tup: concat1(t1,t2,r1.len,r2.len) | t1∈r1.tup, t2∈r2.tup with t1[n1] = t2[n2]⟩;
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Set operations Go back

Figure 10: RISCAL implementation of the set operation

pred union_compatible(r1:Relation, r2:Relation) ⇔ r1.len=r2.len;

fun rUnion(r1:Relation, r2:Relation):Relation

requires union_compatible(r1,r2) ∧ |r1.tup| + |r2.tup| ≤ M;

= ⟨len: r1.len, tup: r1.tup ∪ r2.tup⟩;

fun rIntersect(r1:Relation, r2:Relation):Relation

requires union_compatible(r1,r2);

= ⟨len: r1.len, tup: r1.tup ∩ r2.tup⟩;

fun rMinus(r1:Relation, r2:Relation):Relation

requires union_compatible(r1,r2);

= ⟨len: r1.len, tup: r1.tup \ r2.tup⟩;
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