
Introduction to
Parallel and Distributed Computing

Exercise 4 (July 4)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface as a .zip or
.tgz file which contains

• a single PDF (.pdf) file with
– a cover page with the title of the course, your name, Matrikelnummer, and email-
address,

– a section with the source code of the program benchmarked, the output of the
parallelizing compiler, and an explanation of the output,

– a section with the raw data of the benchmarks,
– a section with a summary table and graphical diagrams of the benchmarks.

• the source (.c) file(s) of the programs.

1



Exercise 4: Message Passing Programming in MPI

The goal of this exercise is to develop a MPI-based parallel solution to the “all pairs shortest
paths” problem described in Exercise 1.

MPI Program Initially process 0 broadcasts 𝐷 := 𝑊 to every process (MPI_Bcast). The
program then runs in multiple rounds where in each round 𝐷 := 𝐷 × 𝐷 is computed as follows:

• every process computes some rows of 𝐷 × 𝐷 (row-wise parallelization),

• every process gathers the results of all other processes (MPI_Allgather) such that every
process holds again the complete 𝐷 := 𝐷 × 𝐷.

The dimension 𝑛 of the matrix is not necessarily a multiple of the number 𝑛 of processes. To
simplify the gathering, one may thus extend the matrix to a dimension 𝑛′ = 𝑝 · d𝑛/𝑝e and let
𝑛′/𝑝 rows be gathered from every process.

Scalability Analysis Furthermore, perform a scalability analysis of the program, i.e.:

• determine the basic execution time 𝑇𝑛;

• determine the parallelization overhead 𝑃𝑝,𝑛;

• determine the solution 𝑛𝑝 of the constraint 𝑇𝑛𝑝
= 𝐾𝐸 · 𝑃𝑝,𝑛𝑝

;

• determine the isoefficiency function 𝐼𝐸𝑝 = 𝐾𝐸 · 𝑃𝑝,𝑛𝑝
.

For determining 𝑃𝑝,𝑛, you just need to consider the communication overhead. Here it suffices
to use a simple communication model where sending a message of size 𝑚 takes time Θ(𝑚).
Furthermore assume that broadcasting a message to 𝑝 processors is implemented by sending 𝑝
individual messages to each processor, i.e., takes time Θ(𝑝 · 𝑚); likewise, scattering a message
of size 𝑚 among 𝑝 processors takes the same time as 𝑝 times broadcasting a message of size
𝑚/𝑝, i.e., it takes time Θ(𝑝 · 𝑝 · 𝑚/𝑝) = Θ(𝑝 · 𝑚).

Benchmarking Finally, benchmark the program as follows:

• Take the sequential solution and benchmark it with two appropriate values 𝑁1, 𝑁2 for the
matrix dimension (at least one should run for at least one minute).

• Benchmark the MPI version of the program for 𝑁1 and 𝑁2 and 𝑃 = 1, 4, 8, 16, 32, 64 pro-
cesses. Do not forget to set the environment variable MPI_DSM_CPULIST to pin processes
to separate physical processor cores.

• Apply the result of the scalability analysis to scale the larger of 𝑁1 or 𝑁2 for 𝑃 =

1, 4, 8, 16, 32, 64 processors; benchmark for these values both the sequential and the paral-
lel program. Do the benchmark results confirm the results of the scalability analysis (i.e.,
is the efficiency preserved at a high level)?

Perform your benchmarks and present the results in the same way as in Exercise 1.

2


