Introduction to
Parallel and Distributed Computing
Exercise 3 (June 6)

Wolfgang Schreiner
Wolfgang.Schreiner @risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface as a .zip or
.tgz file which contains

* asingle PDF (.pdf) file with

— a cover page with the title of the course, your name, Matrikelnummer, and email-
address,

— a section with the source code of the program benchmarked, the output of the
parallelizing compiler, and an explanation of the output,

— a section with the raw data of the benchmarks,

— asection with a summary table and graphical diagrams of the benchmarks.

* the source (. java) file(s) of the programs.



Exercise 3: Multi-Threaded/Network Programming in Java

The goal of this exercise is to develop a multi-threaded client/server version of the “all pairs
shortest paths” problem presented in Exercise 1; the solution shall be implemented in the
programming language Java using Java’s concurrency and networking API. Use for this exercise
the most recent version of Java available (e.g., module load jdk/11.0.1+13, see module
avail jdk for all installed Java versions).

First, create a sequential Java solution for the problem; you may use the provided sample
program MatMult. java for matrix multiplication as a starting point of your solution. Benchmark
the program with two appropriate values for N (not necessarily the same as in Exercises 1/2, at
least one value N shall let the program run for at least one minute).

Next, develop a multi-threaded version of the program. Use the high-level concurrency API to
manage a fixed size pool of T threads among which tasks are scheduled each of which processes
a block B of iterations of the squaring algorithm (generate the tasks as instances of Callable
and use for task submission the method invokeAll () which blocks until all tasks have been
processed); experiment to find a suitable value for B. Please note that the pool is to be created
only once before the algorithm is started and subsequently reused for every “squaring” operation.

Write the program such that it can be started in one of two ways:

1. With the command line parameter -server: in this case the program is executed as a
server which repeatedly waits (on some designated port) for the request of a client to
create a random matrix of dimension N with seed R for the random number generator and
solves the problem with T threads; the server sends back to the client the number M of
milliseconds that the solution of the equation system took.

2. With the command line parameter -client N B R T: in this case, the program is
started as a client that contacts the server on the designated port, sends the parameters N,
B, R, and T to the server, waits for the result M, and prints M to the standard output.

Both server and clients may be run on the same machine. Please note that for the Java solution
you may use the programs MatMultPool. java and MatMultNet. java posted on the course
site as a pattern for your own solution.

For generating random numbers, use the class java.util.Random' of the Java standard
library. For instance, assuming the declaration import java.util.*; the code

Random r = new Random(R);
for (int i=0; i<100; i++)
System.out.println(r.nextDouble());

prints 100 floating point numbers generated by a random number generator with seed R.
For benchmarking Java programs, you may use the function

System.currentTimeMillis()

which returns the current wall clock time in milliseconds.
Make sure that threads are pinned to freely available cores by executing a command like

1h‘ctps ://docs.oracle.com/javase/8/docs/api/java/util/Random.html


https://docs.oracle.com/javase/8/docs/api/java/util/Random.html

dplace -c 64-91 program ...

which pins all threads to 32 physical cores (the numbers refer to the cpu partition in the upper
half of the machine). Use top to verify the applied thread/core mapping and the thread’s share
of CPU time (which should be close to 100%).

Report the results as in Exercise 2 (state the version of Java that you used).

Alternative If you prefer, you may elaborate this exercise in C/C++ using Posix threads and
Unix sockets (also using dplace for pinning threads to cores). In that case, you may simply split
the N rows into N /T blocks each of which is processed by one thread. Use srand () and rand ()
for random number generation and measure times with clock_getttime (as in Exercise 1).



