
Object-Oriented Programming in C++ (SS 2022)
Exercise 4: May 26, 2022

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

February 2, 2022

The exercise is to be submitted by the denoted deadline via the submission interface of the
Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the
following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise
and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indenta-
tions are appropriately preserved) and an appropriate font size such that source code
lines do not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution
has unwanted problems or bugs, please document these explicitly (you will get more
credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

Exercise 4: Recursive Polynomials by Inheritance

A univariate polynomial 𝑐𝑛 · 𝑥𝑛 + 𝑐𝑛−1 · 𝑥𝑛−1 + . . . + 𝑐1 · 𝑥 + 𝑐0 =
∑𝑛

𝑖=0 𝑐𝑖 · 𝑥𝑖 of degree 𝑛 can be
essentially represented by an array of its 𝑛 + 1 coefficients 𝑐0, . . . , 𝑐𝑛. The goal of this exercise is
to implement a generic polynomia class RecPoly of univariate polynomials whose coefficients
may be from any type that supports the usual ring operations. Based on this type, we will build
univariate polynomials of type ℤ[𝑥] (coefficients are from ℤ) but also bivariate polynomials of
type ℤ[𝑥, 𝑦] by identifying this type with the univariate polynomial type ℤ[𝑥] [𝑦] (coeffients are
from ℤ[𝑥]); this is also called the recursive representation of multivariate polynomials.

In more detail, the implementation shall work as follows:

1. Take the following abstract class Ring:

class Ring {
public:
// destructor
virtual ~Ring() {}

// a heap-allocated duplicate of this element
virtual Ring* clone() = 0;

// the string representation of this element
virtual string str() = 0;

// the constant of the type of this element and the inverse of this element
virtual Ring* zero() = 0;
virtual Ring* operator-() = 0;

// sum and product of this element and c
virtual Ring* operator+(Ring* c) = 0;
virtual Ring* operator*(Ring* c) = 0;

// comparison function
virtual bool operator==(Ring* c) = 0;

};

2. Implement a concrete class Integer
class Integer: public Ring {
public:
// integer with value n (default 0)
Integer(int n=0);

};

This class overrides all the abstract (pure virtual) operations of class Ring by concrete
definitions for integer arithmetic (where integers are represented by int values).

Note that in the definition of the arithmetic and comparison functions the parameter c
must be explicitly converted from type Ring* to type Integer*. Use the expression

1

dynamic_cast<Integer*>(c) to receive a pointer to a Integer object (respectively 0,
if the conversion is not possible; the program may then be aborted with an error message).

3. Implement a concrete class RecPoly
class RecPoly: public Ring {
public:
// polynomial with n>=0 coefficients and given variable name
RecPoly(string var, int n, Ring **coeffs);

// copy constructor, copy assignment operator, destructor
RecPoly(RecPoly &p);
RecPoly& operator=(RecPoly &p);
virtual ~RecPoly();

};

which implements univariate polynomials with generic coefficient types (i.e. coefficients
that are represented by a concrete subclass of class Ring).

The class stores internally an array of the polynomial coefficients as Ring* values (i.e.,
pointers to objects of (a subclass of) class Ring) where the leading coefficient is not zero
(the zero polynomial is represented by an array of length zero). The constructor thus
ignores trailing zeros in the given arrays. The coefficient array is to be allocated on the
heap and filled with the duplicate 𝑟.clone() of every Ring element 𝑟 of the given array;
the destructor of the class thus frees these elements and the array. Please note that the
constructor does neither store the array passed as an argument nor its elements!

Class RecPoly is itself a concrete subclass of Ring; it thus overrides the abstract (pure
virtual) operations of class Ring by concrete definitions for polynomial arithmetic. The
class also overrides the virtual destructor of class Ring to free the array that was allocated
when the polynomial was constructed and its elements. The text representation 𝑝.str()
of a polynomial 𝑝 shall be surrounded by parentheses (...) to also allow for polynomials
with polynomial coefficients.

When adding/multiplying two polynomials, first allocate a temporary Ring* array for the
coefficients of the result polynomial and then fill this arraywith the appropriate coefficients;
finally construct the result polynomial from this array using the constructor and free the
array. Do not forget to free temporary coefficient values that you have created but that are
not needed any more.

Please note that class RecPoly does not use the class Integer described above!

Class RecPoly can be now tested with univariate polynomials:

Ring* c[] = { new Integer(-5), new Integer(2),
new Integer(0), new Integer(-3) };

RecPoly* p = new RecPoly("x", 4, c); // p = -3x^3 + 2x - 5
cout << p->str();
RecPoly* q = // q = p+p
dynamic_cast<RecPoly*>(p->operator+(p));

2

cout << q->str();
RecPoly* r = // r = p*q
dynamic_cast<RecPoly*>(p->operator*(q));

cout << r->str();

However, it also works with bivariate polynomials:

Ring* d[] = { p, q, r };
RecPoly* s = new RecPoly("y", 3, d); // s = r*y^2 + q*y + p
cout << s->str();
RecPoly* t = // t = s+s
dynamic_cast<RecPoly*>(s->operator+(s));

cout << t->str();
RecPoly* u = // u = s*t;
dynamit_cast<RecPoly*>(s->operator*(t));

cout << u->str();

Make sure to delete all dynamically allocated data at the end of the program (which calls the
corresponding destructors):

delete c[0]; delete c[1]; delete c[2]; delete c[3];
delete p; delete q; delete r;
delete s; delete t; delete u;

Test class RecPoly in a comprehensive way (several calls of each function including the calls
above); print the function results and show the outputs.

3

