The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
THE MATHEMATICAL THEORY OF RELATIONAL DATABASES

Joachim Borya
Johannes Kepler Universität

March 8th, 2022

The goal

In order to see the actual use of the following considerations, we take an actual SQL database as a model.

Figure 1: DDL script
BEGIN TRANSACTION;
CREATE TABLE IF NOT EXISTS 's' (
'Field1' INTEGER,
'Field2' INTEGER
);
INSERT INTO 's' VALUES $(0,0)$;
INSERT INTO 's' VALUES $(0,1)$;
INSERT INTO 's' VALUES $(1,0)$;
CREATE TABLE IF NOT EXISTS ' r ' (
'Field1' INTEGER,
'Field2' INTEGER,
'Field3' INTEGER
);
INSERT INTO 'r' VALUES ($1,1,0$);
INSERT INTO ' r ' VALUES $(0,1,0)$;
INSERT INTO 'r' VALUES ($0,0,0$) ;
INSERT INTO 'r' VALUES (1,1,1);
COMMIT;

The mathematical theory of relational databases

Joachim Borya

The goal

Algebra
Domain
Operations
concat
cartesian

The goal

Later on, we check if our algebraic approach leads to the same result as the query below.

Figure 2: Query

```
SELECT distinct *
FROM
(SELECT r.Field1 as 'a', r.Field3 as 'b'
FROM r WHERE r.Field2 = 1) as 't'
INNER JOIN s
ON s.Field1 = t.a;
```

The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations

Table 1: Output

1	0	1	0
0	0	0	0
0	0	0	1
1	1	1	0

Algebra

- Theoretical foundation for the implementation in RISCAL
- The algebra we construct consists of ...
- a domain Relation
- and operations with signatures of the form * \rightarrow Relation.
- For each operation we also define suitable preconditions.

The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations
RISCAL
Verification idea
Encoding of the query
Results
Appendix

Domain

The mathematical theory of relational databases

Joachim Borya

- Notation: Len(s) $:=n$ and $\operatorname{Tup}(s)=r$ for $s \in$ Relation
- Note: As a means of abstraction the "cells" of a "table" contain only bit values.

The mathematical theory of relational databases

Joachim Borya

The goal

Algebra

Domain
Operations
concat
cartesian
select
project
join
Set operations

RISCAL

Verification idea
Encoding of the query
Results
Appendix

Operations

The mathematical
theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
concat

- The actual operations we will construct are cartesian, select, project, join, union, intersect and minus.
- We will also have a concat function, which is not an actual operation. It will help to introduce cartesian.

concat

The mathematical theory of relational databases

Joachim Borya

- Description: The function concatenates two rows.
- Signature: Row \times Row $\times\{0, \ldots, N\} \times\{0, \ldots, N\} \rightarrow$ Row

Definition

$\operatorname{concat}\left(t_{1}, t_{2}, n_{1}, n_{2}\right):=n \mapsto \begin{cases}t_{1}(n), & \text { if } n<n_{1} \\ t_{2}\left(n-n_{1}\right), & \text { if } n_{1} \leq n<n_{1}+n_{2} \\ 0, & \text { else }\end{cases}$

- Precondition: The parameters n_{1}, n_{2} denote the actual length of a row. Therefore we need to ensure that $n_{1}+n_{2} \leq N$.

cartesian

- Description: The function constructs the cartesian product of two relations.
- Signature: Relation \times Relation \rightarrow Relation

```
Definition
\(\operatorname{cartesian}\left(r_{1}, r_{2}\right)=r: \Leftrightarrow\)
\(\operatorname{Tup}(r)=\left\{\operatorname{concat}\left(t_{1}, t_{2}\right): t_{1} \in \operatorname{Tup}\left(r_{1}\right), t_{2} \in \operatorname{Tup}\left(r_{2}\right)\right\}\) and
\(\operatorname{Len}(r)=\operatorname{Len}\left(r_{1}\right)+\operatorname{Len}\left(r_{2}\right)\).
```

- Precondition: The cartesian product is a relation where the rows have the length $\operatorname{Len}\left(r_{1}\right)+\operatorname{Len}\left(r_{2}\right)$, therefore we need to ensure that $\operatorname{Len}\left(r_{1}\right)+\operatorname{Len}\left(r_{2}\right) \leq N$. The maximum cardinality of this relation is
$\operatorname{Tup}\left(r_{1}\right)|\cdot|$ Tup $r_{2} \mid$, therefore we need to ensure that $\left|\operatorname{Tup}\left(r_{1}\right)\right| \cdot\left|\operatorname{Tup}_{2}\right| \leq M$.

The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations
RISCAL
Verification idea
Encoding of the query

select

The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
cartesian
select
project
join
Set operations
RISCAL
Verification idea
Encoding of the query
Results
Appendix

project

- Description: The function can be used to create a new relation consisting of a rearrangement of certain columns of the previous relation.
- Signature:

$$
\overline{\text { Relation }} \times\{0, \ldots, N\}^{\{0, \ldots, N-1\}} \rightarrow \text { Relation }
$$

Definition

$\operatorname{project}(r, c)=s: \Leftrightarrow \operatorname{Len}(s)=|\{i \in\{0, \ldots, N-1\}: c(i) \neq N\}|$ and
$\forall t_{r} \in \operatorname{Tup}(r) \exists t_{s} \in \operatorname{Tup}(s) \forall i \in\{0, \ldots, \operatorname{Len}(s)-1\}: t_{s}(i)=t_{r}(c(i))$

- Precondition: The parameter c should denote a choice of valid column indices in a certain order. A convenient precondition is given by

$$
\begin{gathered}
\exists i \in\{0, \ldots, N-1\} \forall j \in\{0, \ldots, N-1\}: \\
(j>i \Rightarrow c(i)=N) \wedge(j \leq i \Rightarrow c(i)<\operatorname{Len}(r))
\end{gathered}
$$

join

The mathematical theory of relational databases

Joachim Borya

- Description: The function filters out all rows in the cartesian product that have matching values in two certain columns.
- Signature: Relation ${ }^{2} \times\{0, \ldots, N-1\}^{2} \rightarrow$ Relation

Definition

```
join(r
{concat(t}\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\operatorname{Len}(\mp@subsup{r}{1}{}),\operatorname{Len}(\mp@subsup{r}{2}{})):\mp@subsup{t}{1}{}\in\operatorname{Tup}(\mp@subsup{r}{1}{}),\mp@subsup{t}{2}{}\in\operatorname{Tup}(\mp@subsup{r}{2}{}),\mp@subsup{t}{1}{}(\mp@subsup{n}{1}{})=\mp@subsup{t}{2}{}(\mp@subsup{n}{2}{})
```

- Precondition: Firstly n_{1}, n_{2} need to denote valid columns, therefore we need a precondition $n_{1}<\operatorname{Len}\left(r_{1}\right), n_{2}<\operatorname{Len}\left(r_{2}\right)$. Secondly, just as in the cartesian product we need the preconditions $\operatorname{Len}\left(r_{1}\right)+\operatorname{Len}\left(r_{2}\right) \leq N$ and $\left|\operatorname{Tup}\left(r_{1}\right)\right| \cdot\left|\operatorname{Tup}\left(r_{2}\right)\right| \leq M$.

Set operations

The mathematical theory of relational databases

Joachim Borya

- Description: The functions perform the regular set operations on relations.
- Signature: Relation \times Relation \rightarrow Relation

Definition

```
union( }\mp@subsup{r}{1}{},\mp@subsup{r}{2}{}):=\langle\operatorname{Len}(\mp@subsup{r}{1}{}),\operatorname{Tup}(\mp@subsup{r}{1}{})\cup\operatorname{Tup}(\mp@subsup{r}{2}{})
intersect(r},\mp@subsup{r}{1}{},\mp@subsup{r}{2}{}):=\langle\operatorname{Len}(\mp@subsup{r}{1}{}),\operatorname{Tup}(\mp@subsup{r}{1}{})\cap\operatorname{Tup}(\mp@subsup{r}{2}{})
minus( }\mp@subsup{r}{1}{},\mp@subsup{r}{2}{}):=\langle\operatorname{Len}(\mp@subsup{r}{1}{}),\operatorname{Tup}(\mp@subsup{r}{1}{})\\operatorname{Tup}(\mp@subsup{r}{2}{})
```

- For each of the three operations the relations r_{1}, r_{2} need to be union-compatible, i.e. $\operatorname{Len}\left(r_{1}\right)=\operatorname{Len}\left(r_{2}\right)$. In case of union we additionally have to ensure that $\left|\operatorname{Tup}\left(r_{1}\right)\right|+\left|\operatorname{Tup}\left(r_{2}\right)\right| \leq M$.

Verification idea

1. Encoding of ...

- the database
- and the query
... in a single RISCAL procedure.

2. We prove as a theorem, that our model produces the same output as the query.

The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations
RISCAL
Verification idea
Encoding of the query
Results
Appendix

Encoding of the query

Figure 3: RISCAL procedure query()

```
proc query():Relation {
var dum:Map[Attribute,Element] := Map[Attribute,Element](0);
var r1:Relation := \langlelen: 3, tup: choose s:Set[Row] with |s|=0\rangle;
var r2:Relation := \langlelen: 2, tup: choose s:Set[Row] with |s|=0\rangle;
r1.tup := r1.tup }\cup\mathrm{ {dum};
r2.tup := r2.tup \cup {dum};
dum[1] := 1;
r1.tup := r1.tup }\cup\mathrm{ {dum};
r2.tup := r2.tup U {dum};
dum[0] := 1;
r1.tup := r1.tup }\cup{dum}
dum[1] := 0;
r2.tup := r2.tup }\cup\mathrm{ {dum};
dum[1] := 1;
dum[2] := 1;
r1.tup := r1.tup U {dum};
print r1;
print r2;
var columns:Array[N,Length] := Array[N,Length] (N);
columns[0] := 0;
columns[1] := 2;
print columns;
return join(project2(select(r1,1,1),columns),r2,0,0);
}
```

The mathematical theory of relational databases

Joachim Borya

The goal

Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations

RISCAL

Verification idea
Encoding of the query
Results
Appendix

Results

The mathematical theory of relational databases

Joachim Borya
Figure 4: RISCAL procedure result()

```
proc result():Relation {
var dum:Map[Attribute,Element] := Map[Attribute,Element](0);
var r:Relation := \langlelen: 4, tup: choose s:Set[Row] with |s|=0\rangle;
r.tup := r.tup U {dum};
dum[3] := 1;
r.tup := r.tup }\cup\mathrm{ {dum};
dum[3] := 0;
dum[0] := 1;
dum[2] := 1;
r.tup := r.tup }\cup{dum}
dum[1] := 1;
r.tup := r.tup }\cup{dum}
return r;
}
theorem correct_result() \Leftrightarrow query() = result();
```

In RISCAL it can be verified that the theorem above is true.

The goal
Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations

RISCAL

Verification idea
Encoding of the query
Results
Appendix

concat

Figure 5: RISCAL implementation of concat

```
fun concat1(t1:Row, t2:Row, n1:Length, n2:Length):Row
requires n1 + n2 \leq N;
= choose t:Row with }\forall\mathrm{ i:Attribute. (
if i < n1 then t[i] = t1[i]
else if i \geq n1 ^ i < n1+n2 then t[i] = t2[i-n1]
else t[i] = 0
);
proc concat2(t1:Row, t2:Row, n1:Length, n2:Length):Row
requires n1 + n2 \leq N; {
var t:Row = Array[N,Element] (0);
for var i:Length:=0; i<n1; i:=i+1 do {
t[i] := t1[i];
}
for var i:Length:=n1; i<n1+n2; i:=i+1 do {
t[i] := t2[i-n1];
}
return t;
}
theorem concat_equiv(t1:Row, t2:Row, n1:Length, n2:Length)
requires n1 + n2 \leq N; \Leftrightarrow
concat1(t1,t2,n1,n2) = concat2(t1,t2,n1,n2);
```


cartesian Goback

The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
concat
cartesian
select
Figure 6: RISCAL implementation of cartesian
fun cartesian(r1:Relation, r2:Relation): Relation
requires $r 1 . l e n+r 2$.len $\leq N \wedge|r 1 . t u p| *|r 2 . t u p| \leq M$;
$=\langle l e n: r 1 . l e n+r 2 . l e n, ~ t u p: ~ c o n c a t 1(t 1, t 2, r 1 . l e n, r 2 . l e n) \mid t 1 \in r 1 . t u p, t 2 \in r 2 . t u p\rangle ;$
project
join
Set operations

RISCAL

Verification idea
Encoding of the query
Results
Appendix

select Goback

The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations

RISCAL

Verification idea
Encoding of the query
Results
Appendix

project

Figure 8: RISCAL implementation of project

```
fun project1(r:Relation, columns:Array[N,Length]):Relation
requires ( }\exists\mathrm{ i:Attribute. }\forall\textrm{j}:Attribute
(j>i # columns[j] = N) ^ (j\leqi # columns[j] < r.len));
= choose s:Relation with s.len = |i | i:Attribute with columns[i] \not= N| ^
(}\forall\textrm{tr}:\mathrm{ Row. tr Gr.tup }
\exists ts:Row. ts\ins.tup ^ \forall i:Attribute. i < s.len => ts[i]=tr[columns[i]]);
proc project2(r:Relation, columns:Array[N,Length]):Relation
requires ( }\exists\mathrm{ i:Attribute. }\forall\textrm{j}:Attribute
(j>i # columns[j] = N) ^ (j\leqi # columns[j] < r.len)); {
var l:Length := |i | i:Attribute with columns[i] # N|;
var q:Relation := \langlelen: l, tup: choose s:Set[Row] with |s|=0\rangle;
var s:Set[Row] := r.tup;
choose t \in s do {
s := s \{t};
var tn:Row := Array[N,Element] (0);
var j:Length := 0;
for var i:Length := 0; i<N; i:=i+1 do {
if columns[i] }\not=\textrm{N}\mathrm{ then {
tn[j] := t[columns[i]];
j := j+1;
}
}
q.tup := q.tup U {tn};
}
return q;
}
```

The mathematical theory of relational databases

Joachim Borya

The goal

Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations

RISCAL

Verification idea
Encoding of the query
Results
Appendix

jOin Goback

The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations

RISCAL

Verification idea
Encoding of the query
Results
Appendix

Set operations

The mathematical theory of relational databases

Joachim Borya

The goal
Algebra
Domain
Operations
concat
cartesian
select
project
join
Set operations

RISCAL

Verification idea
Encoding of the query
Results
Appendix

