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History

▶ What is SQL?
▶ Successor of SEQUEL (Structured English Query

Lanugage)
▶ First database system using SQL: IBM System R (1974)
▶ For users in the between of IT specialists and other

people with technical backgrounds.
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Examples

▶ Simple SQL database: sqlite
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Time varying relations and algebra

▶ Mathematical framework for tables in a relational
database

▶ Questions:
▶ What is a relation?
▶ What does time-varying mean?
▶ How can relations be manipulated?

▶ ”Cartesian product” ⊗
▶ Projection π
▶ Selection σ
▶ Join ▷◁
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Time varying relations and algebra

▶ A relation schema is a finite ordered set
R = ({Ai}ni=1,≤) of attribute names.

▶ Each attribute name corresponds to a (simple normal)
domain dom(Ai ) ⊆ U ∈ {Ω∗,N}, i ∈ [n].

▶ The set of tuples Tup(R) on a relation scheme R is{
t : R →

n⋃
i=1

dom(Ai ) : t(Ai ) ∈ dom(Ai ), i ∈ [n]

}
.

Because R is ordered we can associate Tup(R) with

×n
i=1 dom(Ai ).

▶ A (normalized) relation r on a relation scheme R is a
finite subset of Tup(R). We also write r ∈ Rel(R) and
vice versa R = Att(r).
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Normalization of an unnormalized relation
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Set operations

Definition

Let R = {A1, . . . ,An} and S = {B1, . . . ,Bm} be relation
schemes and r ∈ Rel(R), s ∈ Rel(S) relations, then we call r
and s union compatible if n = m and dom(Ai ) = dom(Bi )
for every i ∈ [n].

For union-compatible relations we can execute every set
operation as usual.

▶ r ∪ s := {t ∈ Tup(R) : t ∈ r ∨ t ∈ s}
▶ r ∩ s := {t ∈ Tup(R) : t ∈ r ∧ t ∈ s}
▶ r\s := {t ∈ Tup(R) : t ∈ r ∧ t /∈ s}
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Cartesian product

Definition

Let R = {Ai}ni=1, S = {Bi}mi=1 be relation schemes,
r ∈ Rel(R), s ∈ Rel(S) be relations and tr ∈ r , ts ∈ s be
tuples. We define

tr ◦ ts := (tr (A1), . . . , tr (An), ts(B1), . . . , ts(Bm))

and
r ⊗ s := {tr ◦ ts : tr ∈ r , ts ∈ s}.

The relation r ⊗ s ∈ Rel(T ) is the cartesian product of the
relations r , s on the relation schema

T = {Ci}ki=1 := {A1, . . . ,An,B1, . . . ,Bm}.
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Projection

Definition

Let R = {Ai}ni=1 be a relation scheme and r ∈ Rel(R) a
relation. Let S := {Aik}mk=1 ⊆ R be a subset of attribute
names. The projection of r on S is defined as

πS(r) = {(t(Ai1), . . . , t(Aim)) : t ∈ r}.

We immediately see that

πS(r) ⊆ π{Ai1
}(r)⊗ · · · ⊗ π{Aim}(r).
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Functional dependency

Definition

Let R = {Ai}ni=1 be a relation scheme and r ∈ Rel(R) a
relation. Let S1 = {Aik}mk=1 and S2 = {Ajk}lk=1 subsets of
R. We call S2 functionally dependent on S1 w.r.t. r if

{((t(Aik ))
m
k=1, (t(Ajk ))

l
k=1) : t ∈ r} ⊆ πS1(r)× πS2(r)

is a function. In this case we write S1
r→ S2. We also define

RelS1→S2(R) = {r ∈ Rel(R) : S1
r→ S2}.
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Keys, prime attributes and second normal form

Definition

Let R = {Ai}ni=1 be a relation schema, r ∈ Rel(R) a relation
and K ⊂ R. We call K a key of the relation r, if K → R\K
and there is no K ′ ⊂ K with K ′ → R\K ′. A superset of a
key K is called a superkey and the attributes A ∈ K of a key
are called prime. An attribute A ∈ R s.t. there is no key K
with A ∈ K is called non-prime.

Definition

Let R = {Ai}ni=1 be a relation schema and r ∈ Rel(R) a
relation. Then we say, that r is in second normal form, if for
every non-prime attribute A ∈ R, every key K ⊆ R of r and
S ⊂ K , K → {A} and S ̸→ {A} hold.
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Selection

Definition

Let R = {Ai}ni=1 a relation schema, r ∈ Rel(R) a relation
and a ∈ dom(Aν) for some Aν ∈ R. Then we define the
selection as

σAν=a(r) := {t ∈ r : t(Aν) = a}.

▶ σA=a(σB=b(r)) = σB=b(σA=a(r))

▶ σA=a(rγs) = σA=a(r)γσA=a(s) for γ ∈ {∪,∩, \}
▶ σA=a∧B=b(r) = σA=a(r) ∩ σB=b(r)
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Join

Definition

Let R = {Ai}ni=1, S = {Bi}mi=1 be relation schemes,
r ∈ Rel(R), s ∈ Rel(S) be relations and Aν ∈ R,Bµ ∈ S
attribute names. The relation

r
Aν=Bµ
▷◁ s := {tr ◦ ts : tr ∈ r ∧ ts ∈ s ∧ tr (Aν) = ts(Bµ)}

is called (equi-)join of r and s on Aν and Bµ.

▶ Selections and joins are exchangeable.

r
Aν=Bµ
▷◁ s = σAν=Bµ(r ⊗ s)

r
Aν=A
▷◁ {(a)} = σAν=a(r)

for a ∈ dom(Aν) and {(a)} ∈ Rel({A})
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select-expression

▶ All valid expressions have this form.

▶ The query is restricted to produce distinct tuples.

▶ The part identifier is an ad-hoc replacement for a
table-name.

▶ The set of all such expression will be called SPJ.
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result-column, table

▶ The table of a column has to be referenced as well
(technically SQL automatically looks this up).

▶ The part scheme-name has no importance in our
considerations.
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join-clause

▶ This clause provides the rhs of a join.
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comp-op, comp, cond

▶ The part literal denotes a C-style integer or string
literal.

▶ The part cond is a simple boolean expression involving
literals, column names and comparison operators.
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Meaning of a SPJ expression

▶ What are the objects we work with? Answer:

R :=

{
r ⊂

n

×
i=1

Di : n ∈ N, ∀i ∈ [n] : Di ⊂ N ∨ Di ⊂ Ω∗

}
▶ In reality only finite relations are important.
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Mapping of tables and relations
▶ How do we connect the concepts of tables and

relations?

▶ Let {Ri}mi=1 be relation schemes, i.e.

Ri := {Ai1, . . . ,Aini} for i ∈ [m]

and r1 ∈ Rel(R1), . . . , rm ∈ Rel(Rm) relations.

▶ Consider a set of variables e.g. identifiers

V := {tid1, . . . , tidm, tid1.att1, . . . , tid1.attn1,

. . . , tidm.att1, . . . , tidm.attnm}
and a map D : V → {ri}mi=1 ∪

⋃
{Ri}mi=1 given by

D(tid1) := r1, . . . ,D(tidm) := rm,

D(tid1.att1) := A11, . . . ,D(tid1.attn1) := A1n1 ,

. . . ,D(tidm.att1) := Am1, . . . ,D(tidm.attnm) := Amnm

.
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Semantic function definition

▶ Goal: Construction of a map [[·]]D : SPJ → R.
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Semantic function

for table expressions t

[[SELECT * FROM t]]D := D(t).

for select-expressions S

[[SELECT * FROM (S) AS subquery]]D =
[[SELECT * FROM subquery]]D∗ with

D∗(E ) :=


[[E ]]D, if E = subquery

A, if E = subquery.*

D(E ), else

The attribute names of [[subquery]]D are inherited from the
tables involved in the construction of the subquery but with
the prefix subquery. Note that A ∈ Att([[subquery]]D).
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Example

QS := SELECT adult.name, adult.address

FROM (S)
) AS adult;

S = SELECT owner.name, owner.address

FROM owner

WHERE owner.age > 17;

Meaning

Att([[S ]]D) = {N,A}

D∗ := D ∪ [adult 7→ [[S ]]D, adult.name 7→ N, adult.address 7→ A]

[[QS ]]D = [[SELECT adult.name, adult.address FROM adult]]D∗
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Semantic function

for table or select-expressions F1, . . . ,Fn

[[SELECT * FROM F1, . . . ,Fn]]D =⊗n
i=1[[SELECT * FROM Fi ]]D

for result-column expressions c1, . . . , cn

[[SELECT c1, . . . cn FROM F ]]D =
π(D(c1),...,D(cn))([[SELECT * FROM F ]]D)

It is only defined this way if
D(c1), . . . ,D(cn) ∈ Att([[SELECT * FROM F ]]D).
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Semantic function

for a list of table or select-expressions F

[[SELECT * FROM F WHERE c = a]]D =
σD(c)=ā([[SELECT * FROM F ]]D)

It is only defined this way if D(c) ∈ Att(F ) and
a ∈ dom(D(c)).

▶ [[SELECT * FROM F WHERE c < a]]D =⋃∞
i=1 σD(c)=ā−i ([[SELECT * FROM F ]]D)

▶ [[SELECT * FROM F WHERE c <= a]]D =⋃∞
i=0 σD(c)=ā−i ([[SELECT * FROM F ]]D)
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Semantic function

for table or select-expressions F1,F2 and
c1 ∈ Att(F1), c2 ∈ Att(F2)

[[SELECT * FROM F1 JOIN F2 ON c1 = c2]]D

= [[SELECT * FROM F1]]D
D(c1)=D(c2)

▷◁ [[SELECT * FROM F2]]D
= σD(c1)=D(c2)([[SELECT * FROM F1]]D ⊗ [[SELECT * FROM F2]]D)

= [[SELECT * FROM F1,F2 WHERE c1 = c2]]D
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Example

[[ SELECT inventory.desc, inventory.stock

FROM inventory

JOIN (SELECT * FROM product WHERE product.type =

"fruit") AS fruits

ON inventory.desc = fruits.desc

WHERE inventory.stock < 8 ]]D

= π(D(inventory.desc),D(inventory.stock))(
[[ SELECT * FROM inventory

JOIN (SELECT * FROM product WHERE product.type =

"fruit") AS fruits

ON inventory.desc = fruits.desc

WHERE inventory.stock < 8 ]]D
)
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= π(D(inventory.desc),D(inventory.stock))(
σD(inventory.stock)<8(
[[ SELECT * FROM inventory

JOIN (SELECT * FROM product WHERE product.type =

"fruit") AS fruits

ON inventory.desc = fruits.desc ]]D
))

= π(D(inventory.desc),D(inventory.stock))(
σD(inventory.stock)<8( [[ SELECT * FROM inventory ]]D
▷◁D(inventory.desc)=D(fruits.desc)

[[ SELECT *

FROM (SELECT * FROM product WHERE product.type =

"fruit") AS fruits ]]D
))
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= π(D(inventory.desc),D(inventory.stock))(
σD(inventory.stock)<8( [[ SELECT * FROM inventory ]]D
▷◁D(inventory.desc)=D(fruits.desc)

[[ SELECT * FROM product WHERE product.type =

"fruit") ]]D
))

= π(D(inventory.desc),D(inventory.stock))(
σD(inventory.stock)<8( D(inventory)
▷◁D(inventory.desc)=D(fruits.desc)

σD(product.type=”fruit”)(D(product))
))

= π(D(inventory.desc),D(inventory.stock))(⋃∞
i=1 σD(inventory.stock)=8−i ( D(inventory)

▷◁D(inventory.desc)=D(fruits.desc)

σD(product.type=”fruit”)(D(product))
))
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Sources

E. F. Codd, ”Further normalization of the database
relational model”, 1971.

Gottfried Vossen, ”Datenbankmodelle,
Datenbanksprachen und
Datenbankmangementsysteme”, 2008.

David Maier, ”The theory of relational databases”, 1983.

https://sqlite.org/lang select.html

Syntax diagrams created with Railroad Diagram Generator
https://www.bottlecaps.de/rr/ui
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