
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LTL Model Checking in RISCAL
Master Thesis Topic

Sütő Ágoston

Research Institute for Symbolic Computation

Thesis supervisor: Prof. Wolfgang Schreiner

November 29, 2021

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 1 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction

Model checking is a method used for checking whether a system meets a
given specification

RISCAL is a software used to model algorithms (deterministic and
non-deterministic)

LTL is a logic that allows us to talk about the future of paths

Several methods for LTL model checking exist

The goal of the thesis is to research these methods and choose one to
implement it as an extension to RISCAL

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 2 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concurrency

Non-deterministic system: may exhibit different behaviours on different
runs given the same input.

Concurrent system: can execute several computations at the same time.

Due to race conditions, concurrency might lead to non-determinism.

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 3 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concurrent systems in real life

Downtown Flushing By Chris Hamby, CC BY-SA 2.0

System consisting of the mechanism
responsible for moving the cabin and
the mechanism for controlling the
cabin door. We would expect it to
satisfy:
Safety properties: cabin never

moves when the doors
are open.

Liveness properties: whenever the
call button on a certain
floor was pressed, the
cabin will eventually
stop there, and open
the door.

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 4 / 21

https://commons.wikimedia.org/w/index.php?curid=87135392

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The problem

There is a rather large body of sad experience to indicate that a
concurrent program can withstand very careful scrutiny without
revealing its errors.1

1S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.
Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 5 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RISCAL

language and associated software system

developed at RISC by Prof. Wolfgang Schreiner

used to describe mathematical algorithms over finite structures

used as a preliminary step in computer assisted proofs

limited support for non-determinism: ”shared” and ”distributed”
systems

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 6 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-determinism in RISCAL

val N: N; axiom minN ⇔ N ≥ 4;
type elem = N[N];

shared system S1
{

var x: elem = 0;
var y: elem = 0
init(a:elem) with a > N / 2;

{ x := a; y := N - a; }
action incx() with x < N;

{ x := x + 1; y := y - 1; }
action decx() with x > y + 1;

{ x := x - 1; y := y + 1; }
action swap() with x > y + 1;

{ var tmp := x; x := y; y := tmp; }
}

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 7 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-determinism in RISCAL

What we can do: check if a property holds in all states using ”invariants”.
E.g.: invariant x + y = N;

What we cannot do: check properties of runs. E.g. ”x > y until the action
swap is taken”

It’s not immediately clear how to specify this constraint.

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 8 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-determinism in RISCAL

What we can do: check if a property holds in all states using ”invariants”.
E.g.: invariant x + y = N;

What we cannot do: check properties of runs. E.g. ”x > y until the action
swap is taken”

It’s not immediately clear how to specify this constraint.

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 8 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kripke structures

Definition
A Kripke-structure K over a set of atomic propositions A is defined as the
tuple (S, I,T,L) consisting of the following components:

a set of states S
a set of initial states I ⊆ S, I ̸= ∅
a total transition relation T ⊆ S × S
a labelling function L : S → P(A)

Definition
A trace π is a finite or infinite sequence of states of a Kripke-structure,
such that ∀i : si

T−→ si+1
π = (s0, s1, ...)

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 9 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Linear Temporal Logic

The alphabet of LTL consists of atomic propositions A, the standard
logical operators (¬, ∨, ∧ etc.) and special temporal operators X (next),
F (finally), G (globally), and U (until). The language of LTL formulas is
defined inductively as follows:

If p is an atomic proposition, then it is an LTL formula
If g and h are LTL formulas, then ¬g, g ∨ h, g ∧ h etc. are LTL
formulas
If g and h are LTL formulas, then Xg, Fg, Gg, and g U h are LTL
formulas.

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 10 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Linear Temporal Logic

The semantics of LTL for infinite paths π of a Kripke-structure
K = (S, I,T,L) are defined as follows:

π |= p iff p ∈ L(π(0))
π |= ¬g iff π ̸|= g
π |= g ∨ h iff π |= g or π |= h
π |= g ∧ h iff π |= g and π |= h
π |= Xg iff π1 |= g
π |= Fg iff ∃ i ∈ N : πi |= g
π |= Gg iff ∀ i ∈ N : πi |= g
π |= g U h iff ∃ i ∈ N : πi |= h ∧ ∀ j ∈ N : j < i → πj |= g

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 11 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LTL examples

s1
{p}

s2
{p, q}

s3
{r}

Figure: Example of a Kripke structure

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 12 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Model checking

Goal: given a model of a program as a Kripke structure check if
any given LTL formula holds for the system

Solution: use automaton and graph theory (only one of many possible
approaches)

1 Construct an automaton SA from the system whose language L(SA)
describes all system runs

2 Construct an automaton PA from the LTL property whose language
L(PA) describes runs satisfying the formula

3 Check L(SA) ⊆ L(PA)

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 13 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Model checking

Goal: given a model of a program as a Kripke structure check if
any given LTL formula holds for the system

Solution: use automaton and graph theory (only one of many possible
approaches)

1 Construct an automaton SA from the system whose language L(SA)
describes all system runs

2 Construct an automaton PA from the LTL property whose language
L(PA) describes runs satisfying the formula

3 Check L(SA) ⊆ L(PA)

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 13 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Model checking

Goal: given a model of a program as a Kripke structure check if
any given LTL formula holds for the system

Solution: use automaton and graph theory (only one of many possible
approaches)

1 Construct an automaton SA from the system whose language L(SA)
describes all system runs

2 Construct an automaton PA from the LTL property whose language
L(PA) describes runs satisfying the formula

3 Check L(SA) ⊆ L(PA)

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 13 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Model checking

Goal: given a model of a program as a Kripke structure check if
any given LTL formula holds for the system

Solution: use automaton and graph theory (only one of many possible
approaches)

1 Construct an automaton SA from the system whose language L(SA)
describes all system runs

2 Construct an automaton PA from the LTL property whose language
L(PA) describes runs satisfying the formula

3 Check L(SA) ⊆ L(PA)

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 13 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Transforming the system
Given a Kripke-structure K = (S, I,T,L) we have to construct an
automaton such that:

If s0 → s1 → s2 → ... is a run of the system

Then ι
L(s0)−−−→ s0

L(s1)−−−→ s1
L(s2)−−−→ s2 → ... is accepted by the

automaton.

s1
{p}

s2
{p, q}

s3
{r}

ι

s1 s2

s3

{p}

{p, q}

{r}{p}

Figure: Kripke structure and corresponding automaton

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 14 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Transforming the system
Given a Kripke-structure K = (S, I,T,L) we have to construct an
automaton such that:

If s0 → s1 → s2 → ... is a run of the system

Then ι
L(s0)−−−→ s0

L(s1)−−−→ s1
L(s2)−−−→ s2 → ... is accepted by the

automaton.

s1
{p}

s2
{p, q}

s3
{r}

ι

s1 s2

s3

{p}

{p, q}

{r}{p}

Figure: Kripke structure and corresponding automaton

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 14 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Transforming the formula

Given an LTL formula f we have to construct an automaton such that
If (p0, p1, p2, ...) |= f

Then s0
p0−→ s1

p1−→ s2
p2−→ s3 → ... is accepted by the automaton.

p ¬p true

(a) Gp

¬p p true

(b) Fp

true p p

(c) FGp

true
p

true
(d) GFp

Figure: Examples

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 15 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Transforming the formula

Given an LTL formula f we have to construct an automaton such that
If (p0, p1, p2, ...) |= f

Then s0
p0−→ s1

p1−→ s2
p2−→ s3 → ... is accepted by the automaton.

p ¬p true

(a) Gp

¬p p true

(b) Fp

true p p

(c) FGp

true
p

true
(d) GFp

Figure: Examples

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 15 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The next steps

The original problem was to check if L(SA) ⊆ L(PA).
⇔ L(SA) ∩ L(PA) = ∅
⇔ L(SA) ∩ L((¬P)A) = ∅

An equivalent problem is to check if L(SA) ∩ L((¬P)A) = ∅
The synchronized product automaton of two automata A
and B, A ⊗ B, has the property L(A) ∩ L(B) = L(A ⊗ B)
Its states consist of pairs (sA, sB) where sA and sB are states
of A and B, and a transition (sA, sB) → (s′A, s′B) is possible if
sA → s′A and sB → s′B is possible in A and B

The final problem is then to check if L(SA ⊗ (¬P)A) = ∅

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 16 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The next steps

The original problem was to check if L(SA) ⊆ L(PA).
⇔ L(SA) ∩ L(PA) = ∅
⇔ L(SA) ∩ L((¬P)A) = ∅

An equivalent problem is to check if L(SA) ∩ L((¬P)A) = ∅
The synchronized product automaton of two automata A
and B, A ⊗ B, has the property L(A) ∩ L(B) = L(A ⊗ B)

Its states consist of pairs (sA, sB) where sA and sB are states
of A and B, and a transition (sA, sB) → (s′A, s′B) is possible if
sA → s′A and sB → s′B is possible in A and B

The final problem is then to check if L(SA ⊗ (¬P)A) = ∅

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 16 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The next steps

The original problem was to check if L(SA) ⊆ L(PA).
⇔ L(SA) ∩ L(PA) = ∅
⇔ L(SA) ∩ L((¬P)A) = ∅

An equivalent problem is to check if L(SA) ∩ L((¬P)A) = ∅
The synchronized product automaton of two automata A
and B, A ⊗ B, has the property L(A) ∩ L(B) = L(A ⊗ B)
Its states consist of pairs (sA, sB) where sA and sB are states
of A and B, and a transition (sA, sB) → (s′A, s′B) is possible if
sA → s′A and sB → s′B is possible in A and B

The final problem is then to check if L(SA ⊗ (¬P)A) = ∅

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 16 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The next steps

The original problem was to check if L(SA) ⊆ L(PA).
⇔ L(SA) ∩ L(PA) = ∅
⇔ L(SA) ∩ L((¬P)A) = ∅

An equivalent problem is to check if L(SA) ∩ L((¬P)A) = ∅
The synchronized product automaton of two automata A
and B, A ⊗ B, has the property L(A) ∩ L(B) = L(A ⊗ B)
Its states consist of pairs (sA, sB) where sA and sB are states
of A and B, and a transition (sA, sB) → (s′A, s′B) is possible if
sA → s′A and sB → s′B is possible in A and B

The final problem is then to check if L(SA ⊗ (¬P)A) = ∅

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 16 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Checking emptiness

In our case (automata with infinite words = Büchi automata) a word
r is accepted if it contains infinitely many occurences of an accepting
state s

Since the state space is finite, it must contain a cycle s → ... → s

Which means we have too look for a reachable accepting state also
reachable from itself

Finding such a state s together with the path to it from an initial
state and the cycle is the same as finding a counterexample to the
original LTL formula in the system

The problem is then reduced to a simple graph-theoretical problem,
which can be solved efficiently using depth-first search

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 17 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Checking emptiness

In our case (automata with infinite words = Büchi automata) a word
r is accepted if it contains infinitely many occurences of an accepting
state s

Since the state space is finite, it must contain a cycle s → ... → s

Which means we have too look for a reachable accepting state also
reachable from itself

Finding such a state s together with the path to it from an initial
state and the cycle is the same as finding a counterexample to the
original LTL formula in the system

The problem is then reduced to a simple graph-theoretical problem,
which can be solved efficiently using depth-first search

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 17 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Checking emptiness

In our case (automata with infinite words = Büchi automata) a word
r is accepted if it contains infinitely many occurences of an accepting
state s

Since the state space is finite, it must contain a cycle s → ... → s

Which means we have too look for a reachable accepting state also
reachable from itself

Finding such a state s together with the path to it from an initial
state and the cycle is the same as finding a counterexample to the
original LTL formula in the system

The problem is then reduced to a simple graph-theoretical problem,
which can be solved efficiently using depth-first search

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 17 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Checking emptiness

In our case (automata with infinite words = Büchi automata) a word
r is accepted if it contains infinitely many occurences of an accepting
state s

Since the state space is finite, it must contain a cycle s → ... → s

Which means we have too look for a reachable accepting state also
reachable from itself

Finding such a state s together with the path to it from an initial
state and the cycle is the same as finding a counterexample to the
original LTL formula in the system

The problem is then reduced to a simple graph-theoretical problem,
which can be solved efficiently using depth-first search

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 17 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Checking emptiness

In our case (automata with infinite words = Büchi automata) a word
r is accepted if it contains infinitely many occurences of an accepting
state s

Since the state space is finite, it must contain a cycle s → ... → s

Which means we have too look for a reachable accepting state also
reachable from itself

Finding such a state s together with the path to it from an initial
state and the cycle is the same as finding a counterexample to the
original LTL formula in the system

The problem is then reduced to a simple graph-theoretical problem,
which can be solved efficiently using depth-first search

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 17 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementation in RISCAL

"satisfies" <LTL> clause added to RISCAL for non-deterministic
systems

also fairness constraints (next presentation)

rich LTL language, including also quantifiers, variable bindings, weak
until

first step: transform the input to a simple form of LTL

then construct property automaton

system automaton is constructed ”on the fly”

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 18 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Thesis structure

Introduction (∼7 pages)
State of the art (∼22 pages)

▶ Tableau-based explicit-state model checking
▶ Symbolic model checking
▶ Bounded model checking

Automata-based model checking (∼15 pages)
Implementation (∼15 pages)
Optimizations (∼12 pages)
Results and measurements (∼10 pages)
Future work and conclusions (∼5 pages)

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 19 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Time schedule

October - November 2021 thesis proposal, reading about automata based
model checking

December 2021 - January 2022 learning about other model checking
approaches, state of the art chapter

February - April 2022 basic implementation, automata based model
checking and implementation chapters

May 2022 implementing and describing optimizations, results and
measurements chapter

June 2022 writing the future work and conclusions chapters, the
introduction and finalizing the thesis

July 2022 defense of the thesis and final examination.

Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 20 / 21

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bibliography
[1] Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer

Science & Business Media London, 2008. isbn: 978-1-84628-769-5.
[2] Armin Biere et al. “Symbolic Model Checking without BDDs”. In:

Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 1999. Springer, Berlin, Heidelberg, 1999, pp. 193–207.

[3] Edmund M. Clarke et al. Handbook of Model Checking. Springer,
Cham, 2018. isbn: 978-3-319-10575-8.

[4] Leslie Lamport. Specifying Systems. The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley, 2002. isbn:
0-321-14306-X.

[5] Kenneth L. McMillan. Symbolic model checking. Springer, Boston,
1993. isbn: 978-0-7923-9380-1.

[6] Moshe Y. Vardi. “An automata-theoretic approach to linear temporal
logic”. In: Logics for Concurrency: Structure versus Automata.
Springer-Verlag, 1996. isbn: 978-3-540-60915-5.
Sütő Ágoston (RISC) LTL Model Checking November 29, 2021 21 / 21

	Introduction
	LTL
	Model checking
	References

