
Formal Methods in Software Development
Exercise 7 (January 10)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

July 28, 2021

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the JML-annotated .java/.jml file(s) used in the exercise,

3. the proof files generated by the KeY prover (use the menu option “Save”).

Email submissions are not accepted.

1



9a (70 points): A Private JML Class Specification

Take the attached source code of a class BoundedBag which implements a “bag” (a multiset) of
integers with an upper bound on the number of different elements in the bag. Extend this source
by a private specification in the heavy-weight JML format that is as expressive as possible. Pay
attention to provide a suitable object invariant that describes the ranges of the variables and the
contents of the arrays as accurately as possible; you also have to provide a suitable invariant for
the loop in the body of the class.

Use jml -Q and openjml to check the specification (which must not yield an error). Run
escjava2 -NoCautions and openjmlesc on the specification; if these tools give warnings,
take them seriously1. Use KeY to verify the contracts of the various methods as far as possible.

The invariant related to the variable sum requires the use of the \sum quantifier which is often
not so well supported by JML tools; please report your experience with openjmlesc and KeY
with respect to this quantifier. If it lets the verification fail, you may ultimately comment out the
part of the invariant involving this quantifier.

The result of this exercise contains the JML-annotated file BoundedBag.java, the output of
jml -Q, openjml, escjava2 -NoCautions, and openjmlesc on this file, and a screenshot of
the final state of KeY for the verification of each method plus an explicit statement whether the
verification suceeded (if not, then try to analyze the failed verification and give your estimation,
why it did not succeed).

9b (30 points): A Public JML Class Specification

Take the previously JML-annotated file BoundedBag.java and modify it for an appropriate
public specification of class BoundedBag; this public specification is to be written into file
BoundedBag.jml and shall be based on the abstract datatype BagModel which specifies an
unbounded bag in the attached file BagModel.java.

The core idea of modeling a bounded bag (BoundedBag) by an unbounded bag (BagModel)
is is that the public function size() in BoundedBag poses an upper limit on the number of
different elements of the model bag; we can simply express this by an invariant. A constructor
call BoundedBag(n) sets the limit to n, which has to be appropriately specified. The limit is
not changed by any of the other functions, which can be specified by a corresponding constraint.
A call of add() is only allowed, if the upper limit is not reached, which can be expressed by a
corresponding precondition.

Some further hints:

• Generally the basic specification strategy is the same as shown in class for the model-
based public specification of class IntStack.

1openjmlesc may complain about possible overflows in the variable sum; you may ignore these or handle them by
additional preconditions and object invariants.

2



• Introduce in BoundedBag.jml a model field of type BagModel which receives its value
from a model function toModel().

• Give in BoundedBag.jml public specifications of the public functions using the model
field and the corresponding operations on BagModel.

• Annotate BoundedBag.java by a refines annotation that indicates that the definition of
class BoundedBag in this file is a refinement of the class declared in BoundedBag.jml.
Add the keyword also to the private specifications of all public methods.

• Give a specification-only definition of the abstraction function toModel as

/*@ public pure model BagModel toModel() {
@ BagModel b = new BagModel();
@ for (int i=0; i<number; i++)
@ {
@ b = b.add(element[i], counter[i]);
@ }
@ return b;
@ }
@*/

Annotate this definition with a private behavior specification that relates the constructed
BagModel to the current BoundedBag object.

• Add the private object variables to the data group of the model variable; thus whenever an
assignment on the model variable in the public specification is allowed, also an assignment
to the private variables in the implementation is allowed.

First use jml -Q to type-check BoundedBag.jml in a directory that contains also the file Bag-
Model.java but does not contain BoundedBag.java (otherwise also this file will be immedi-
ately type-checked). As soon as the type-check succeeds, also add the file BoundedBag.java
from the previous exercise to this directory and extend it as indicated above. Now use jml -Q
again to type-check the files.

The result of the exercise contains the files BoundedBag.jml, BoundedBag.java, and also
BagModel.java, and the output of jml -Q.

3


