
Formal Methods in Software Development
Exercise 6 (January 3)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the JML-annotated .java file(s) used in the exercise,

3. the proof files generated by the KeY prover (use the menu option “Save”).

Email submissions are not accepted.

1



Exercise 6: JML Verification with OpenJML and KeY

Take from Exercise 5 the JML-annotated program functions maximumIndex, maximumEle-
ment1, maximumElement2, insert, replace, and add1. Perform for each of these functions
the tasks described below (you may use a single Java class file for all functions, but do not include
any test code or main functions in this file).

Annotate every loop in the function with an appropriate invariant (loop_invariant) and ter-
mination measure (decreases) and check these with escjava2 and openjmlesc. Please note
that escjava2 only checks whether the invariants hold after some iterations, i.e., only if an
invariant is too strong, it reports an error. On the other hand, openjmlesc inded tries to prove
the verification conditions generated from the invariants; if it reports an error, this may indicate
that an invariant is too weak. However, the openjmlesc prover is not complete; it may also fail
to prove a valid verification condition.

It is recommended to usemultipleloop_invariant statements for each conjunct of the invariant;
then it is easier to determine which part of an invariant failed. In the case of a for loop, do not
forget to add the range condition for the loop variable to the invariant. If an array is modified, do
not forget to specify which part of the array has remained unchanged so far.

When you are confident about these annotations, provide the loop also with an assignable
clause (which is not standard JML but nevertheless needed by the KeY verifier) that lists all
variables/array contents changed in the loop; in the case of a for loop, also add the loop variable
to this clause (Key should actually automatically add all local variables changed by the loop body
to the assignable clause, but actually not all proofs work without doing this explicitly). Then
verify the method with KeY.

If your annotations are correct and sufficiently strong, the proofs should run through automatically
with a few invocations of the KeY prover (be sure that in tab “Proof Search Strategy” the
“Defaults” options are selected; you may want to reduce the “Max. Rule Applications” to speed
up the proof search)1. After each proof search, you may also attempt to apply an SMT Solver (I
recommend Z3) to close some proof obligations. If you cannot complete the proof, investigate
the proof tree to find out what went wrong and reconsider your annotations (they may be wrong,
i.e, too strong, or too weak); for this purpose, you may unselect the option “Hide intermediate
proof steps” in the context menu of the proof tree in order to see all simplification steps performed
by the prover. If you cannot complete the proof, explain in detail which part of the verification
failed and what you believe is the reason for the failure.

Optional: youmay validate your specifications/loop invariants by translating the Java functions to
RISCAL procedures, equip them with specifications and loop annotations, and check these (this
is recommended, if an OpenJML/KeY proof fails). For each such RISCAL specification/check,
1The verification of maximumElement1 runs into in a situation where the KeY prover does not find the correct
instantiation of a universally quantified goal with the variable result_𝑁 (with some number 𝑁) denoting the
result of maximumIndex. In that situation, you may click on the forall formula to be instantiated, select from the
popup menu the first rule allLeftHide, and then enter in the popup window in the tab “Variable Instantiations”
in the empty field to the right of field t (G term) the instantiation term result_𝑁 . Then press “Apply” and
you will see the formula has been correspondingly instantiated. Press the green arrow and the proof runs through.

2



you get 10P bonus. Please note that the RISCAL versions of replace and add1 cannot modify
their argument arrays but have to return a corresponding result array (in addition to the result of
the Java function, i.e., the RISCAL procedure returns a Tuple or Record value).

The deliverables of this exercise consist of

• a nicely formatted copy of the JML-annotated Java code (the version with the assignable
clauses used for running KeY),

• the output of jml -Q or openjml on the class,

• the output of escjava2 -NoCautions and openjmlesc on the class,

• for each function, an explicit statement where you say whether you could complete the
verification or not (and how many proof branches have remained open)

• for each function, a screenshot of the KeY prover when the proof has been completed
(or got stuck) illustrating the generated proof tree (without the intermediate steps) with
emphasis of the still open proof branches (if any),

• for each open proof branch a screenshot of the proof obligation, an explanation of the role
of this obligation in the overall verification, and your conjecture why the proof failed.

Please also report any observations or insights you have gained.

3


