
Formal Methods in Software Development
Exercise 4 (December 6)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the RISCAL specification (.txt) file(s) used in the exercise;

3. the .java/.theory file(s) used in the exercise,

4. the task directory (.PETASKS*) generated by the RISC ProgramExplorer.

Email submissions are not accepted.

1



Exercise 4: Verifying a Program by Checking and Proving

Use the RISC ProgramExplorer to formally specify the following program, analyze its seman-
tics, and verify its total correctness with respect to its specification:

// sort array a in ascending order using the "selection sort" algorithm
public static void sort(int[] a) {
int n = a.length;
int i = n;
while (i > 1) {
int j = maximum(a, i);
i = i-1;
if (i != j) { int e = a[i]; a[i] = a[j]; a[j] = e; }

}
}

// returns position of greatest element in the first n elements of a
public static int maximum(int[] a, int n) {
int p = n-1;
int m = a[p];
int i = p-1;
while (i >= 0) {
if (a[i] > m) { p = i; m = a[p]; }
i = i-1;

}
return p;

}

For the purpose of this exercise, in the specification of sort it suffices to state that the result
array is sorted; it is not necessary to establish a relationship between the elements of the input
array and those of the result array.

In detail, perform the following tasks:

1. (35P) For a first validation of specification and annotations, take the RISCAL specifica-
tion file sort.txt which embeds an algorithmic version of above code and equip the pro-
cedures with suitable pre-conditions, post-conditions, invariants, and termination terms.
Please note that here sort is a function that returns a sorted duplicate of its argument.

Hint: in the loop invariant of sort, specify (along with all necessary minor conditions on
a, n and i) what you know for all elements from position i on and, if i < n, what you know
about the relationship of the element at position i to all the elements at smaller positions
(this implies a relationship of all elements at/after i to all elements before).

Validate (for moderately large values N > 0 and M > 0) the annotations by checking
the procedure and by checking the automatically generated verification conditions. These
annotations shall then serve as the basis of the further proof-based verification.

Optional (20P bonus): complete the specification of sort by also claiming that the result
array is a permutation of a and check the execution of the procedure: for this you must

2



specify the existence of a one-to-one mapping of indices from the original array to indices
of the result array (such mappings are just arrays of integers). Then also extend the loop
invariant correspondingly and check the automatically generated verification conditions.

2. (35P) Create a separate directory in which you place the file Exercise4.java, cd to this
directory, and start ProgramExplorer & from there. The task directory .PETASKS* is
then generated as a subdirectory of this directory.

Derive a suitable specification of sort and maximum (clauses requires, assignable,
ensures) and annotate the loop in the body of sort appropriately (clauses invariant
and decreases). Do not forget to specify the non-nullness status and the length of the
array (in both pre-state and post-state). Based on these annotations analyze the semantics
of sort and verify the correctness of the method with respect to its specification.

3. (30P) Annotate the loop in the body of maximum, analyze the semantics of the method,
and verify its correctness with respect to its specification.

The deliverables are for both sort and maximum the same that have been requested in Exer-
cise 3 (if you cannot show all required verification conditions for Part 2 of the exercise you can
nevertheless perform the proofs for Part 3).

Among all verification tasks, the only complicated one is to show in Part 2 that the invariant of
the loop in sort is preserved by every iteration of the loop (which invokes maximum). If in this
proof some goal contains a term of form IF F THEN ... ELSE ... ENDIF, perform a case
distinction by executing case F.

Otherwise, all proofs may proceed by application of the commands decompose, split, scatter,
auto, and instantiate.

3


