Verifying Java Programs with KeY

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

Wolfgang Schreiner

http://www.risc.jku.at

1/19

The KeY Tool

http://www.key-project.org

- KeY: environment for verification of JavaCard programs.
 - Subset of Java for smartcard applications and embedded systems.
 - Universities of Karlsruhe, Koblenz, Chalmers, 1998–
 - Beckert et al: "Deductive Software Verification The KeY Book: From Theory to Practice", Springer, 2016.
 - "Chapter 16: Formal Verification with KeY: A Tutorial"
- Specification languages: OCL and JML.
 - Original: OCL (Object Constraint Language), part of UML standard.
 - Later added: JML (Java Modeling Language).
- Logical framework: Dynamic Logic (DL).
 - Successor/generalization of Hoare Logic.
 - Integrated prover with interfaces to external decision procedures.
 - Simplify, CVC3, CVC4, Yices, Z3.

Now only JML is supported as a specification language.

3/19

Verifying Java Programs

Extended static checking of Java programs:

- Even if no error is reported, a program may violate its specification.
 - Unsound calculus for verifying while loops.
- Even correct programs may trigger error reports:
 - Incomplete calculus for verifying while loops.
 - Incomplete calculus in automatic decision procedure (Simplify).

Verification of Java programs:

- Sound verification calculus.
 - Not unfolding of loops, but loop reasoning based on invariants.
 - Loop invariants must be typically provided by user.
- Automatic generation of verification conditions.
 - From JML-annotated Java program, proof obligations are derived.
- Human-guided proofs of these conditions (using a proof assistant).
 - Simple conditions automatically proved by automatic procedure.

We will now deal with an integrated environment for this purpose.

http://www.risc.jku.at

2/19

Dynamic Logic

Wolfgang Schreiner

Further development of Hoare Logic to a modal logic.

- Hoare logic: two separate kinds of statements.
 - Formulas *P*, *Q* constraining program states.
 - Hoare triples $\{P\}C\{Q\}$ constraining state transitions.
- Dynamic logic: single kind of statement.
 - Predicate logic formulas extended by two kinds of modalities.
 - $[C]Q (\Leftrightarrow \neg \langle C \rangle \neg Q)$
 - Every state that can be reached by the execution of C satisfies Q.
 - The statement is trivially true, if *C* does not terminate.
 - $(C) Q (\Leftrightarrow \neg [C] \neg Q)$
 - There exists some state that can be reached by the execution of C and that satisfies Q.
 - The statement is only true, if *C* terminates.

States and state transitions can be described by DL formulas.

Dynamic Logic versus Hoare Logic

Hoare triple $\{P\}C\{Q\}$ can be expressed as a DL formula.

- Partial correctness interpretation: $P \Rightarrow [C]Q$
 - If P holds in the current state and the execution of C reaches another state, then Q holds in that state.
 - Equivalent to the partial correctness interpretation of $\{P\}C\{Q\}$.
- Total correctness interpretation: $P \Rightarrow \langle C \rangle Q$
 - If *P* holds in the current state, then there exists another state that can be reached by the execution of C in which Q holds.
 - If C is deterministic, there exists at most one such state; then equivalent to the total correctness interpretation of $\{P\}C\{Q\}$.

http://www.risc.jku.at

For deterministic programs, the interpretations coincide.

Modal formulas can also occur in the context of quantifiers. • Hoare Logic: $\{x = a\}$ y:=x*x $\{x = a \land y = a^2\}$ Use of free mathematical variable *a* to denote the "old" value of *x*. Dynamic logic: $\forall a : x = a \Rightarrow [y := x * x] x = a \land y = a^2$ Quantifiers can be used to restrict the scopes of mathematical variables across state transitions. Set of DL formulas is closed under the usual logical operations. 5/19 Wolfgang Schreiner http://www.risc.jku.at A Calculus for Dynamic Logic Basic rules: Rules for predicate logic extended by general rules for modalities.

Advantages of Dynamic Logic

Command-related rules:

$$\frac{\Gamma \vdash F[T/X]}{\Gamma \vdash [X := T]F}$$

$$\frac{\Gamma \vdash [C_1][C_2]F}{\Gamma \vdash [C_1; C_2]F}$$

$$\frac{\Gamma \vdash [C_1]F \quad \Gamma \vdash [C_2]F}{\Gamma \vdash [C_1 \cup C_2]F}$$

$$\frac{\Gamma \vdash F \Rightarrow [C]F}{\Gamma \vdash F \Rightarrow [C^*]F}$$

$$\frac{\Gamma \vdash F \Rightarrow G}{\Gamma \vdash [F?]G}$$

From these, Hoare-like rules for the high-level language can be derived.

Wolfgang Schreiner

Wolfgang Schreiner

7/19

6/19

Command-related rules:
$$\Gamma \vdash F[T/X]$$

$$\begin{array}{c} \Gamma \vdash [X := T]F \\ \hline \Gamma \vdash [C_1][C_2]F \\ \hline \Gamma \vdash [C_1; C_2]F \\ \hline \hline \Gamma \vdash [C_1]F \quad \Gamma \vdash [C_2]F \\ \hline \hline \Gamma \vdash [C_1 \cup C_2]F \\ \hline \Gamma \vdash F \Rightarrow [C]F \end{array}$$

A Calculus for Dynamic Logic

A core language of commands (non-deterministic):

- X := T ... assignment
- $C_1; C_2$... sequential composition
- $C_1 \cup C_2$... non-deterministic choice
- ... iteration (zero or more times) C*
- F? \dots test (blocks if *F* is false)

A high-level language of commands (deterministic):

skip = true? abort = false? X := T $C_1: C_2$ if *F* then C_1 else $C_2 = (F?; C_1) \cup ((\neg F)?; C_2)$ = (*F*?; *C*) \cup (\neg *F*)? if F then C while F do C $= (F?; C)^*; (\neg F)?$

A calculus is defined for dynamic logic with the core command language.

Objects and Updates

Calculus has to deal with the pointer semantics of Java objects.

- Aliasing: two variables o, o' may refer to the same object.
 - Field assignment o.a := T may also affect the value of o'.a.
- **Update formulas:** $\{o.a \leftarrow T\}F$
 - Truth value of F in state after the assignment o.a := T.
- Field assignment rule:

$$\frac{\Gamma \vdash \{o.a \leftarrow T\}F}{\Gamma \vdash [o.a := T]F}$$

Field access rule:

$$\frac{\Gamma, o = o' \vdash F(T) \quad \Gamma, o \neq o' \vdash F(o'.a)}{\Gamma \vdash \{o.a \leftarrow T\}F(o'.a)}$$

- Case distinction depending on whether *o* and *o'* refer to same object.
- Only applied as last resort (after all other rules of the calculus).

Considerable complication of verifications.

Wolfgang Schreiner

http://www.risc.jku.at

9/19

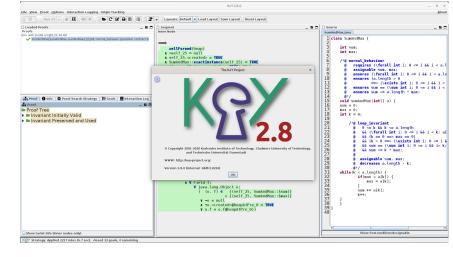
A Simple Example

File/Load Example/Getting Started/Sum and Max

class SumAndMax {	/*@ loop_invariant
int sum; int max;	@ 0 <= k && k <= a.length
<pre>/*@ requires (\forall int i;</pre>	<pre>@ && (\forall int i;</pre>
<pre>@ 0 <= i && i < a.length; 0 <=</pre>	a[i]); @ 0 <= i && i < k; a[i] <= max)
<pre>@ assignable sum, max;</pre>	@ && (k == 0 ==> max == 0)
<pre>@ ensures (\forall int i;</pre>	<pre>@ && (k > 0 ==> (\exists int i;</pre>
<pre>@ 0 <= i && i < a.length; a[i]</pre>	<= max); @ 0 <= i && i < k; max == a[i]))
@ ensures (a.length > 0 ==>	<pre>@ && sum == (\sum int i;</pre>
<pre>@ (\exists int i;</pre>	<pre>@ 0 <= i && i< k; a[i])</pre>
<pre>@ 0 <= i && i < a.length;</pre>	0 && sum <= k * max;
<pre>@ max == a[i]));</pre>	<pre>@ assignable sum, max;</pre>
<pre>@ ensures sum == (\sum int i;</pre>	<pre>@ decreases a.length - k;</pre>
<pre>@ 0 <= i && i < a.length; a[i])</pre>	; @*/
<pre>@ ensures sum <= a.length * max;</pre>	<pre>while (k < a.length) {</pre>
@*/	if $(max < a[k]) max = a[k];$
<pre>void sumAndMax(int[] a) {</pre>	sum += a[k];
sum = 0;	k++;
$\max = 0;$	}
int $k = 0;$	
Wolfgang Schreiner http:/	//www.risc.jku.at 11/19

The KeY Prover

> KeY &



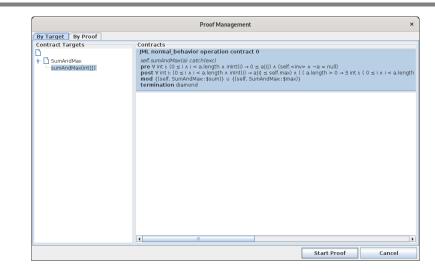
Wolfgang Schreiner

Wolfgang Schreiner

http://www.risc.jku.at

10/19

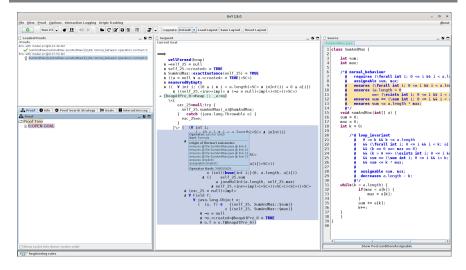
A Simple Example (Contd)



Generate the proof obligations and choose one for verification.

http://www.risc.jku.at

A Simple Example (Contd'2)



The proof obligation in Dynamic Logic.

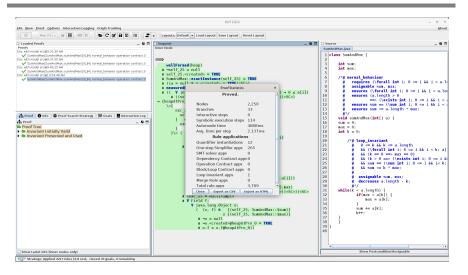
Wolfgang Schreiner

http://www.risc.jku.at

13/19

15/19

A Simple Example (Contd'4)



The proof runs through automatically.

Wolfgang Schreiner

http://www.risc.jku.at

A Simple Example (Contd'3)


```
wellFormed(heap)
  & ...
  & (( \forall int i;
          ((0 <= i & i < a.length) & inInt(i) -> 0 <= a[i])
      & ((self 25.<inv> & (!a = null)))))
-> {heapAtPre_0:=heap || _a:=a}
    \<{
        exc_25=null;try {
          self_25.sumAndMax(_a)@SumAndMax;
        } catch (java.lang.Throwable e) { exc_25=e; }
      }\> ( (\forall int i;
                ( (0 <= i & i < a.length) & inInt(i) -> a[i] <= self_25.max)
           & (( ( a.length > 0
                  -> \exists int i;
                       (( (0 <= i & i < a.length) & inInt(i) & self_25.max = a[i])))
               & (( self_25.sum = javaCastInt(bsum{int i;}(0, a.length, a[i]))
                  & (( self_25.sum <= javaMulInt(a.length, self_25.max)
                      & self_25.<inv>)))))))
           & (exc_25 = null)
           & \forall Field f;
               \forall java.lang.Object o;
                 ( (o, f) \in
                                 {(self_25, SumAndMax::$sum)}
                              \cup {(self_25, SumAndMax::$max)}
                  | | o = null
                 & !o.<created>@heapAtPre_0 = TRUE
                  | o.f = o.f@heapAtPre_0))
```

Press button "Start/stop automated proof search" (green arrow).

http://www.risc.jku.at

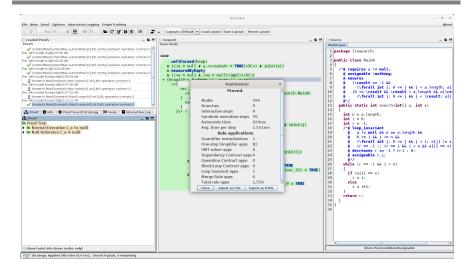
14/19

Linear Search

Wolfgang Schreiner

```
/*@ requires a != null;
      @ assignable \nothing;
      @ ensures
          (\result == -1 &&
      0
      0
            (\forall int j; 0 <= j && j < a.length; a[j] != x)) ||
          (0 <= \result && \result < a.length && a[\result] == x &&</pre>
      0
            (\forall int j; 0 <= j && j < \result; a[j] != x));</pre>
      0
      @*/
   public static int search(int[] a, int x) {
      int n = a.length; int i = 0; int r = -1;
      /*@ loop_invariant
        @ a != null && n == a.length && 0 <= i && i <= n &&</pre>
          (\forall int j; 0 <= j && j < i; a[j] != x) &&
        0
        0 \quad (r = -1 \mid | (r = i \&\& i < n \&\& a[r] = x));
        @ decreases r == -1 ? n-i : 0;
        @ assignable r, i; // required by KeY, not legal JML
        @*/
      while (r == -1 \&\& i < n) {
        if (a[i] == x) r = i; else i = i+1;
      }
      return r;
   }
Wolfgang Schreiner
                                    http://www.risc.jku.at
```

Linear Search (Contd)



Also this verification is completed automatically.

Wolfgang Schreiner

http://www.risc.jku.at

17/19

19/19

Summary

- Various academic approaches to verifying Java(Card) programs.
 - Jack: http://www-sop.inria.fr/everest/soft/Jack/jack.html
 - Jive: http://www.pm.inf.ethz.ch/research/jive
 - Mobius: http://kindsoftware.com/products/opensource/Mobius/
- Do not yet scale to verification of full Java applications.
 - General language/program model is too complex.
 - Simplifying assumptions about program may be made.
 - Possibly only special properties may be verified.
- Nevertheless very helpful for reasoning on Java in the small.
 - Much beyond Hoare calculus on programs in toy languages.
 - Probably all examples in this course can be solved automatically by the use of the KeY prover and its integrated SMT solvers.
- Enforce clearer understanding of language features.
 - Perhaps constructs with complex reasoning are not a good idea...

In a not too distant future, customers might demand that some critical code is shipped with formal certificates (correctness proofs)...

Proof Structure

- Multiple conditions (Taclet option "javaLoopTreatment::teaching"):
 - Invariant initially valid.
 - Body Preserves Invariant.
 - Use Case (on loop exit, invariant implies postcondition).
- If proof fails, elaborate which part causes trouble and potentially correct program, specification, loop annotations.

For a successful proof, in general multiple iterations of automatic proof search (button "Start") and invocation of separate SMT solvers required (button "Run Z3, Yices, CVC3, Simplify").

Wolfgang Schreiner

http://www.risc.jku.at