Klausur 2 Berechenbarkeit und Komplexität 17. Januar 2013

Part 1 Quadratic Equation

A function $f: \mathbb{N}^2 \to \{0,1\}$ is defined by

$$f(p,q):= \left\{ \begin{array}{ll} 1 & \mbox{if } \exists x \in \mathbb{R}: \ x^2+px+q=0, \\ 0 & \mbox{otherwise}. \end{array} \right.$$

Recall that

$$x^2 + px + q = 0 \iff x = -p/2 \pm \sqrt{(p/2)^2 - q}.$$

 $f(p,q) = 1 \iff p^2 \ge 4q$

Is f a LOOP computable function? 1 yes The key is to observe that $\mathbf{2}$ no Is $\{1^q 0 1^p \mid p \in \mathbb{N} \land q \in \mathbb{N} \land f(p,q) = 1\}$ a regular language? No, Pumping Lemma. Suppose a finite automaton with N states recognizes L. Let $w := 1^{N+4} 01^{N+4}$. Note that $w \in L$. By the Pumping Lemma, there exists a natural number m > 0 such that all words of the form $1^{N+4+km}0^{N+4}$ are in L too. But that would mean that $(N+4)^2 \ge N+4+km$ for all k, which contradicts $4q \le p^2$.

Part 2 RecFun6

Consider the functions $f: \mathbb{N} \to \mathbb{N}, f(n) := \lfloor \sqrt{n} \rfloor$ and $g: \mathbb{N} \to \mathbb{N}$ where

 $g(n) := \begin{cases} \sqrt{n} & \text{if } \sqrt{n} \in \mathbb{N}, \\ undefined & otherwise. \end{cases}$

(Note that |x| ist the largest integer which does not exceed x.)

3 yes	Is f LOOP computable?
	Since $f(n) \leq n$ we can compute $f(n)$ by a bounded search.
4 yes	Is f WHILE computable?
	Of course. (1) It is WHILE computable because it is LOOP computable. (2) It is WHILE computable because $f(n)$ can be computed by a search in a while loop.
5 no	Is g LOOP computable?
	g is not total, while every every LOOP computable function is total.
6 yes	Is g Turing computable?
	g is WHILE computable and therefore Turing computable.

Part 3 *RecursiveEnumerable6RAM*

We say that a RAM R accepts a word $w \in \{1,2\}^*$ if R starts with the letters of w on its input tape and stops with 1 written on its output tape. L(R) is the set of all words accepted by R.

Let R be a RAM and let $f : \mathbb{N} \to \mathbb{N}$ be a Turing-computable total function. Suppose that R has the following property: When R accepts a word of length n, it does so in no more than f(n) steps.

7 yes] Is $L(R)$ necessarily recursive?
	We simulate R by a Turing machine. First we compute $f(n)$. Then we start R with input w und execute $f(n)$ steps. If w has been accepted then $w \in L(R)$, otherwise $w \notin L(R)$. Therefore, $L(R)$ and $\overline{L(R)}$ are both recursively enumerable.
8 no 9 no	Is $L(R)$ necessarily finite? Let L' be a recursively enumerable language. Can it be concluded the $L(R) \cap L'$ is recursive?
	Consider the case $L(R) = \Sigma^*$ where R accepts any word. Thus, if the intersection $L(M) \cap L$ were recursive, it would mean that every recursively enumerable language is recursive. This is clearly not the case.

Part 4 RecursiveEnumerable8

Let a Turing machine M compute a partial function $f : \{0\}^* \to_P \{0\}^*$ on sequences of 0 and let $f' : \mathbb{N} \to_P \mathbb{N}$ be the function that maps the length of the input of M to the length of the output of M.

Is f' necessarily while-computable?

Is f' necessarily primitive recursive?

Is f' necessarily μ -recursive?

Try all rewritings up to a certain number of rewrite steps k; loop on k.

Part 6 Decidable4

Let $\langle f \rangle$ be the Gödel number encoding of a μ -recursive function f as a bit-string and let $\langle n \rangle$ be the binary encoding of a natural number n as a bit string. Below f denotes a μ -recursive function $\mathbb{N} \to_P \mathbb{N}$ and n denotes a natural number.

Is the problem "f is defined on input n" decidable? (Problem instance is $(\langle f \rangle, \langle n \rangle)$.)

Is the problem "f is primitive recursive" decidable? (Problem instance is $\langle f \rangle$.)

Assume f is primitive recursive. Is the problem "f is defined on input n" decidable? (Problem instance is $(\langle f \rangle, \langle n \rangle)$.)

Part 7 Complexity2012

Answer the following questions.

18 yes	Does $(f(n) + 7)^2 = O(f(n)^2 + 7)$ hold for all $f : \mathbb{N} \to \mathbb{R}_{\geq 0}$?
19 yes	Does $2^{f(n)+7} = O(2^{f(n)})$ hold for all $f : \mathbb{N} \to \mathbb{R}_{\geq 0}$?
20 no	Does $2^{f(n)+n} = O(2^{f(n)})$ hold for all $f : \mathbb{N} \to \mathbb{R}_{\geq 0}$?
21 no	Does $log(n)^2 = O(log(n^2))$ hold?

Part 8 WHILEadditions

Consider the following LOOP program with input x_1 and output x_0 .

```
x0 = 1
loop x1 do
loop x0 do
x0 = x0 + 1
end
x0 = x0 + 1
```

22 1 Point What ist the function $f : \mathbb{N} \to \mathbb{N}$ computed by the program? Please fill in; you do not need to justify your answer. f(n) =

The inner loop doubles x1. The program computes $n \mapsto 2^n + 1$: If m(1) initially contains the input n, then m(0) holds $2^n + 1$ upon termination.

23 yes Let T(n) be the number of additions performed by the program for input $x_1 = n$. Is T(n) primitive recursive?

Yes, because T = f which is LOOP computable: All additions in the program increase x_0 , and the program contains no subtractions. Therefore, the number T(n) of additions performed is equal to the output f(n). Note that the x0=1 is, in fact, x0=x0+1.

Part 9 DivideAndConquer

Let T(n) be the number of functions calls to h resulting from evaluating g(n, 1).

```
function g(n, x) {
    if n==1
        return h(x)
    else
        n2 = floor(n/2) //floor(x) = biggest integer not exceeding x
        sum = 0
        for k=1 to 3
            sum = sum + g(n2, x + n2 + k)
        return sum
```

You do not need to justify your answers.

24 yesIs
$$T(4) = 9$$
?25 1 PointDetermine $T(n)$ asymptotically for large n. Use Θ -notation. $\Theta(n^{\log_2(3)}) = \Theta(3^{\log_2(n)})$