| Name | Matrikel | | | | | SKZ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Klausur 2
 Berechenbarkeit und Komplexität

17. Januar 2013

Part 1 QuadraticEquation

A function $f: \mathbb{N}^{2} \rightarrow\{0,1\}$ is defined by

$$
f(p, q):=\left\{\begin{array}{lc}
1 & \text { if } \exists x \in \mathbb{R}: x^{2}+p x+q=0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Recall that

$$
x^{2}+p x+q=0 \Longleftrightarrow x=-p / 2 \pm \sqrt{(p / 2)^{2}-q} .
$$

$\mathbf{1}$	yes	Is f a $L O O P$ computable function?

The key is to observe that

$$
f(p, q)=1: \Leftrightarrow p^{2} \geq 4 q
$$

$\mathbf{2}$		no \quad Is $\left\{1^{q} 01^{p} \mid p \in \mathbb{N} \wedge q \in \mathbb{N} \wedge f(p, q)=1\right\}$ a regular language?

No, Pumping Lemma. Suppose a finite automaton with N states recognizes L. Let $w:=1^{N+4} 01^{N+4}$. Note that $w \in L$. By the Pumping Lemma, there exists a natural number $m>0$ such that all words of the form $1^{N+4+k m} 0^{N+4}$ are in L too. But that would mean that $(N+4)^{2} \geq N+4+k m$ for all k, which contradicts $4 q \leq p^{2}$.

Part 2 RecFun6
Consider the functions $f: \mathbb{N} \rightarrow \mathbb{N}, f(n):=\lfloor\sqrt{n}\rfloor$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ where

$$
g(n):=\left\{\begin{array}{lr}
\sqrt{n} & \text { if } \sqrt{n} \in \mathbb{N}, \\
\text { undefined } & \text { otherwise } .
\end{array}\right.
$$

(Note that $\lfloor x\rfloor$ ist the largest integer which does not exceed x.)

$\mathbf{3}$	yes	\quad Is f LOOP computable?

Since $f(n) \leq n$ we can compute $f(n)$ by a bounded search.

4	yes	\quad Is f WHILE computable?

Of course. (1) It is WHILE computable because it is LOOP computable. (2) It is WHILE computable because $f(n)$ can be computed by a search in a while loop.

\section*{| $\mathbf{5}$ | | no | Is g LOOP computable? |
| :--- | :--- | :--- | :--- |}

g is not total, while every every LOOP computable function is total.

$\mathbf{6}$	yes	Is g Turing computable?

g is WHILE computable and therefore Turing computable.

Part 3 RecursiveEnumerable6RAM
We say that a RAM R accepts a word $w \in\{1,2\}^{*}$ if R starts with the letters of w on its input tape and stops with 1 written on its output tape. $L(R)$ is the set of all words accepted by R.
Let R be a $R A M$ and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a Turing-computable total function. Suppose that R has the following property: When R accepts a word of length n, it does so in no more than $f(n)$ steps.

$\mathbf{7}$	yes	

We simulate R by a Turing machine. First we compute $f(n)$. Then we start R with input w und execute $f(n)$ steps. If w has been accepted then $w \in L(R)$, otherwise $w \notin L(R)$. Therefore, $L(R)$ and $\overline{L(R)}$ are both recursively enumerable.

$\mathbf{8}$		no
$\mathbf{9}$		no

Is $L(R)$ necessarily finite?
Let L^{\prime} be a recursively enumerable language. Can it be concluded that $L(R) \cap L^{\prime}$ is recursive?

Consider the case $L(R)=\Sigma^{*}$ where R accepts any word. Thus, if the intersection $L(M) \cap L$ were recursive, it would mean that every recursively enumerable language is recursive. This is clearly not the case.

Part 4 RecursiveEnumerable8
Let a Turing machine M compute a partial function $f:\{0\}^{*} \rightarrow_{P}\{0\}^{*}$ on sequences of 0 and let $f^{\prime}: \mathbb{N} \rightarrow_{P} \mathbb{N}$ be the function that maps the length of the input of M to the length of the output of M.

$\mathbf{1 0}$	yes	
$\mathbf{1 1}$		no
$\mathbf{1 2}$	yes	

Is f^{\prime} necessarily while-computable?
Is f^{\prime} necessarily primitive recursive?
Is f^{\prime} necessarily μ-recursive?
Part 5 TermRewriting1

| $\mathbf{1 3}$ | | no Given some term rewriting system and two terms t_{1} and t_{2}. Is it decidable |
| :--- | :--- | :--- | if $t_{1} \rightarrow^{*} t_{2}$?

In the exercises it was shown that Turing machines may be simulated by a term rewriting system.
 decidable if $t_{1} \rightarrow^{*} t_{2}$?

Try all rewritings up to a certain number of rewrite steps k; loop on k.

Part 6 Decidable4
Let $\langle f\rangle$ be the Gödel number encoding of a μ-recursive function f as a bit-string and let $\langle n\rangle$ be the binary encoding of a natural number n as a bit string.
Below f denotes a μ-recursive function $\mathbb{N} \rightarrow_{P} \mathbb{N}$ and n denotes a natural number.

| $\mathbf{1 5}$ | | no \quad Is the problem " f is defined on input n " decidable? (Problem instance is |
| :--- | :--- | :--- | $(\langle f\rangle,\langle n\rangle)$.

Is the problem "f is primitive recursive" decidable? (Problem instance is $\langle f\rangle$.)
Assume f is primitive recursive. Is the problem " f is defined on input n " decidable? (Problem instance is $(\langle f\rangle,\langle n\rangle)$.)

Part 7 Complexity2012
Answer the following questions.

$\mathbf{1 8}$	yes	
$\mathbf{1 9}$	yes	
$\mathbf{2 0}$		no
$\mathbf{2 1}$		no

Does $(f(n)+7)^{2}=O\left(f(n)^{2}+7\right)$ hold for all $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$?
Does $2^{f(n)+7}=O\left(2^{f(n)}\right)$ hold for all $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$?
Does $2^{f(n)+n}=O\left(2^{f(n)}\right)$ hold for all $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$?
Does $\log (n)^{2}=O\left(\log \left(n^{2}\right)\right)$ hold?
Part 8 WHILEadditions
Consider the following LOOP program with input x_{1} and output x_{0}.

```
x0 = 1
loop x1 do
    loop x0 do
            x0 = x0 + 1
        end
end
x0 = x0 + 1
```

| $\mathbf{2 2}$ | 1 Point \quad What ist the function $f: \mathbb{N} \rightarrow \mathbb{N}$ computed by the program? Please fill in; |
| :--- | :--- | you do not need to justify your answer.

$f(n)=$
The inner loop doubles $x 1$. The program computes $n \mapsto 2^{n}+1$: If $m(1)$ initially contains the input n, then $m(0)$ holds $2^{n}+1$ upon termination.
$\mathbf{2 3}$ yes Let $T(n)$ be the number of additions performed by the program for input $x_{1}=n$. Is $T(n)$ primitive recursive?

Yes, because $T=f$ which is LOOP computable: All additions in the program increase x_{0}, and the program contains no subtractions. Therefore, the number $T(n)$ of additions performed is equal to the output $f(n)$. Note that the $\mathrm{x} 0=1$ is, in fact, $\mathrm{x} 0=\mathrm{x} 0+1$.

Part 9 DivideAndConquer
Let $T(n)$ be the number of functions calls to h resulting from evaluating $g(n, 1)$.

```
function g(n, x) {
    if n==1
            return h(x)
    else
        n2 = floor(n/2) //floor(x) = biggest integer not exceeding x
        sum = 0
        for k=1 to 3
            sum = sum + g(n2, x + n2 + k)
        return sum
```

You do not need to justify your answers.

$\mathbf{2 4}$	yes	
$\mathbf{2 5}$	1 Point	

$$
\text { Is } T(4)=9 ?
$$

Determine $T(n)$ asymptotically for large n. Use Θ-notation.

$$
\Theta\left(n^{\log _{2}(3)}\right)=\Theta\left(3^{\log _{2}(n)}\right)
$$

