
BeKomp Problem Set 10 due date: January 25, 2013

Problems Solved: 46 47 48 49 50

Name:

Matrikel-Nr.:

Problem 46. Consider the program

f(n) ==

return g(n, 0, 0, 0)

g(n, m, v, s) ==

if m > n then

return s

else

return g(n, m + 1, 2 * (v + (2 * m + 1) * 2^m), s + v)

which computes a function f : N→ N.

1. Show that
v = 2mm2

holds true for every call g(n,m, v, s) to function g in the execution of f(n).
Hint: Use induction on the number of (nested) function calls to g.

2. Show that

s =

m−1∑
k=0

k22k

holds true for every call g(n,m, v, s) in the execution of f(n).

Hint: Again, use induction on the number of calls to g. In the induction
step, you may want to use the result of Part 1.

3. From Part 2, one may deduce f(n) =
∑m

k=0 k
22k.

Show by induction on n that f(n) = 2n+1(3− 2n + n2)− 6.

Problem 47. Take that recursive program

f(n,b) ==

if n < 1 then return 0

d := floor(n/3)

return b + f(d,1) + 2*f(d,2)

Let C(n) be the number of comparisons executed in the �rst line of the function
body while running f(n, 0) for some positive integer n.

1. Write down a recurrence for C and determine enough initial values.

2. Solve that recurrence for the given initial values and arguments n of the
form n = 3m.

3. Prove by induction that your solution is correct.

Problem 48. Prove or disprove the following:

Berechenbarkeit und Komplexität, WS2012 1



BeKomp Problem Set 10 due date: January 25, 2013

1. O(g(n))2 = O(g(n)2)

2. 2O(g(n)) = O(2g(n))

Hint: First transform above equations into a form that does not involve the

O-notation on the left hand side, then prove the correctness of the resulting

formulas.

Problem 49. An n-bit binary counter counts in 2n−1 steps from (00 . . . 0)2 = 0
to (11 . . . 1)2 = 2n − 1 and in one more step back to (00 . . . 0)2 = 0. The cost
of a step is the number of bits changed at that step. (For instance, the cost of
increasing a 4-bit counter from 1011 to 1100 is 3 since 3 bits are modi�ed.)

1. Consider how often bit position i changes in the 2n cycles and compute
the sum of the number of changes of all positions. The amortized cost is
this sum divided by the number of cycles.

2. Compute the amortized cost by applying the potential method.

Use as the potential Φ(ai) of counter ai after the i-th application of the
increment operation Φ(ai) = b(ai) where b(ai) is the number of 1s in the
binary representation of the counter.

For the computation of an upper bound of the amortized cost ĉi derive
inequalities b(ai) ≤ . . . and ci ≤ . . . using the notion t(ai) for the number
of bits reset from 1 to 0 by the i-th increment operation.

Problem 50. Consider a RAM program that evaluates the value of
∑n

i=1 i
2

in the naive way (by iteration). Analyze the worst-case asymptotic time and
space complexity of this algorithm on a RAM assuming the existence of ope-
rations operation ADD r and MUL r for the addition and multiplication of the
accumulator with the content of register r.

1. Determine a Θ-expression for the number S(n) of registers used in the
program with input n (space complexity).

2. Compute a Θ-expression for the number T (n) of instructions executed for
input n (time complexity in constant cost model),

3. Assume the logarithmic cost model of a RAM, i.e., the cost of an operation
is proportional to the length of the arguments involved. Example: If a is
the (bit) length of the accumulator and l is the (bit) length of the content
of register r then MUL r costs a + l and ADD r costs max a, l.

Compute the assymptotic costs C(n) (using O-notation) of the algorithm
for input n.

Berechenbarkeit und Komplexität, WS2012 2


