Problems Solved:

| 41 | 42 | 43 | 44 | 45 |
| :--- | :--- | :--- | :--- | :--- |

## Name:

## Matrikel-Nr.:

Problem 41. Let $T(n)$ be the number of multiplications carried out by the following Java program.

```
int a, b, i, product, max;
max = 1;
a = 0;
while ( a < n ) {
    b = a;
    while (b <= n) {
        product = 1;
        i = a;
        while (i < b) {
            product = product * factors[i];
            i = i + 1; }
        if (product > max) { max = product; }
        b = b + 1; }
    a = a + 1; }
```

1. Determine $T(n)$ exactly as a nested sum.
2. Determine $T(n)$ asymptotically using $\Theta$-Notation. In the derivation, you may use the asymptotic equation

$$
\sum_{k=0}^{n} k^{m}=\Theta\left(n^{m+1}\right) \text { for } n \rightarrow \infty
$$

for fixed $m \geq 0$ which follows from approximating the sum by an integral:

$$
\sum_{k=0}^{n} k^{m} \simeq \int_{0}^{n} x^{m} d x=\frac{1}{m+1} n^{m+1}=\Theta\left(n^{m+1}\right)
$$

Problem 42. Let $T(n)$ be total number of calls to tick() resulting from run$\operatorname{ning} P(n)$.

```
procedure P(n)
    k = 0
    while k < n do
        tick()
        P(k)
        k = k + 1
    end while
end procedure
```

1. Compute $T(0), T(1), T(2), T(3), T(4)$.
2. Give a recurrence relation for $T(n)$. (It is OK if your recurrence involves a sum.)
3. Give a recurrence relation for $T(n)$ that does not involve a sum. (Hint: Use your recurrence relation (twice) in $T(n+1)-T(n)$.)
4. Solve your recurrence relation. (It is OK to just guess the solution as long as you prove that it satisfies the recurrence.)

Problem 43. Let $T(n)$ be given by the recurrence relation

$$
T(n)=3 T(\lfloor n / 2\rfloor)
$$

and the initial value $T(1)=1$. Show that $T(n)=O\left(n^{\alpha}\right)$ with $\alpha=\log _{2}(3)$. Hint: Define $P(n): \Longleftrightarrow T(n) \leq n^{\alpha}$. Show that $P(n)$ holds for all $n \geq 1$ by induction on $n$. It is not necessary to restrict your attention to powers of two.

Problem 44. Let $T(n)$ be the total number of times that the instruction $a[i, j]=a[i, j]+1$ is executed during the execution of $P(n, 0,0)$.

```
procedure P(n, x, y)
    if n >= 1 then
        for (i = x; i < x+n; i++)
            for (j = y; j < y+n; j++)
                a[i,j] = a[i,j] + 1
        h = floor( n / 2)
        P(h, x, y )
        P(h, x+h, y )
        P(h, x, y+h)
        P(h, x+h, y+h)
    end if
end procedure
```

1. Compute $T(1), T(2)$ and $T(4)$.
2. Give a recurrence relation for $T(n)$.
3. Solve your recurrence relation for $T(n)$ in the special case where $n=2^{m}$ is a power of two.
4. Use the Master Theorem to determine asymptotic bounds for $T(n)$.

Problem 45. Consider the following Java methods:

```
int a(int n) { return b(n); }
int b(int n) {
    if (n<1) {return -1;}
    int p = b(n-1);
    int q = b(n-2);
    int r = b(n-2);
    return p+q+r; }
```

Let $f_{n}$ be the number of calls to method b which result from evaluating $\mathrm{a}(n)$ where $n \geq 0$. (We assume that no optimizations are made. In particular, both of the function calls $b(n-2)$ in lines 5 and 6 are executed.)

1. Compute $f_{n}$ for $n=0,1, \ldots, 5$.
2. Give a recurrence relation for $f_{n}$.
3. Let

$$
F(z)=\sum_{n=0}^{\infty} f_{n} z^{n}=1+z+4 z^{2}+\ldots
$$

be the generating function of the sequence $f_{n}$. (Assume that this sum converges; for $|z|<1 / 2$ it does.) Show that the generating function $F(z)$ satisfies the equation

$$
\begin{equation*}
F(z)=z F(z)+2 z^{2} F(z)+\frac{1}{1-z}-z \tag{1}
\end{equation*}
$$

Hint: Multiply both sides of your recurrence equation by $z^{n}$; then sum it on $n$. Rewrite your resulting sums in terms of $F(z)$.
4. Solve the equation above for $F(z)$ an perform a partial fraction decomposition on your result. Hint: The correct result is

$$
F(z)=\frac{1}{1-2 z}+\frac{1}{2} \cdot \frac{1}{1+z}-\frac{1}{2} \cdot \frac{1}{1-z} .
$$

Your answer should show your calculation to get this result.
5. Find a closed form expression (i.e. a formula) for $f_{n}$.

Hint: Apply the geometric series

$$
\frac{1}{1-a z}=\sum_{k=0}^{\infty} a^{k} z^{k}
$$

to each summand in the solution for $F(z)$ in Part 4 with $a=2, a=1$ and $a=-1$ and bring the result in a form that matches

$$
F(z)=\sum_{n=0}^{\infty} f_{n} z^{n}
$$

in order to find $f_{n}$.

