Problems Solved:

$41 \quad 42 \quad 43 \quad 44 \quad 45$

Name:

Matrikel-Nr.:

Problem 41. Let T(n) be the number of multiplications carried out by the following Java program.

```
1
      int a, b, i, product, max;
2
      max = 1;
3
      a = 0;
 4
      while (a < n) {
5
        b = a;
6
        while (b \le n) {
          product = 1;
7
8
          i = a;
9
          while (i < b) {
10
            product = product * factors[i];
11
            i = i + 1; \}
          if (product > max) { max = product; }
12
          b = b + 1; }
13
14
        a = a + 1; \}
```

- 1. Determine T(n) exactly as a nested sum.
- 2. Determine T(n) asymptotically using Θ -Notation. In the derivation, you may use the asymptotic equation

$$\sum_{k=0}^{n} k^{m} = \Theta(n^{m+1}) \text{ for } n \to \infty$$

for fixed $m \ge 0$ which follows from approximating the sum by an integral:

$$\sum_{k=0}^{n} k^m \simeq \int_0^n x^m \, dx = \frac{1}{m+1} n^{m+1} = \Theta(n^{m+1})$$

Problem 42. Let T(n) be total number of calls to tick() resulting from running P(n).

```
procedure P(n)
  k = 0
  while k < n do
      tick()
      P(k)
      k = k + 1
   end while
end procedure</pre>
```

end procedure

1. Compute T(0), T(1), T(2), T(3), T(4).

Berechenbarkeit und Komplexität, WS2012

- 2. Give a recurrence relation for T(n). (It is OK if your recurrence involves a sum.)
- 3. Give a recurrence relation for T(n) that does not involve a sum. (*Hint:* Use your recurrence relation (twice) in T(n+1) T(n).)
- 4. Solve your recurrence relation. (It is OK to just guess the solution as long as you prove that it satisfies the recurrence.)

Problem 43. Let T(n) be given by the recurrence relation

$$T(n) = 3T(|n/2|).$$

and the initial value T(1) = 1. Show that $T(n) = O(n^{\alpha})$ with $\alpha = \log_2(3)$. *Hint:* Define $P(n) : \iff T(n) \le n^{\alpha}$. Show that P(n) holds for all $n \ge 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

Problem 44. Let T(n) be the total number of times that the instruction a[i,j] = a[i,j] + 1 is executed during the execution of P(n,0,0).

end procedure

- 1. Compute T(1), T(2) and T(4).
- 2. Give a recurrence relation for T(n).
- 3. Solve your recurrence relation for T(n) in the special case where $n = 2^m$ is a power of two.
- 4. Use the Master Theorem to determine asymptotic bounds for T(n).

Problem 45. Consider the following Java methods:

```
1 int a(int n) { return b(n); }
2 int b(int n) {
3 if (n<1) {return -1;}
4 int p = b(n-1);
5 int q = b(n-2);
6 int r = b(n-2);
7 return p+q+r; }</pre>
```

Berechenbarkeit und Komplexität, WS2012

Let f_n be the number of calls to method **b** which result from evaluating a(n) where $n \ge 0$. (We assume that no optimizations are made. In particular, *both* of the function calls b(n-2) in lines 5 and 6 are executed.)

- 1. Compute f_n for n = 0, 1, ..., 5.
- 2. Give a recurrence relation for f_n .
- 3. Let

$$F(z) = \sum_{n=0}^{\infty} f_n z^n = 1 + z + 4z^2 + \dots$$

be the generating function of the sequence f_n . (Assume that this sum converges; for |z| < 1/2 it does.) Show that the generating function F(z)satisfies the equation

$$F(z) = zF(z) + 2z^2F(z) + \frac{1}{1-z} - z.$$
(1)

Hint: Multiply both sides of your recurrence equation by z^n ; then sum it on n. Rewrite your resulting sums in terms of F(z).

4. Solve the equation above for F(z) an perform a partial fraction decomposition on your result. *Hint:* The correct result is

$$F(z) = \frac{1}{1-2z} + \frac{1}{2} \cdot \frac{1}{1+z} - \frac{1}{2} \cdot \frac{1}{1-z}.$$

Your answer should show your calculation to get this result.

5. Find a closed form expression (i.e. a formula) for f_n . Hint: Apply the geometric series

$$\frac{1}{1-az} = \sum_{k=0}^{\infty} a^k z^k.$$

to each summand in the solution for F(z) in Part 4 with a = 2, a = 1 and a = -1 and bring the result in a form that matches

$$F(z) = \sum_{n=0}^{\infty} f_n z^n$$

in order to find f_n .

Berechenbarkeit und Komplexität, WS2012