Problems Solved:

36	37	38	39	40

Name:

Matrikel-Nr.:

Problem 36. Let L be a language over the alphabet $\Sigma=\{0,1\}$ that is generated by some Turing machine N. For which L is the following problem semidecidable? For which L is it decidable?
Input of the problem (instance of the problem): the code $\langle M\rangle$ of a Turing machine M.
Question of the problem: $L(M) \cap L \neq \emptyset$?
Problem 37. Is the following problem undecidable? Justify your answer. Input of the problem (instance of the problem): The code $\langle M\rangle$ of a Turing machine with input alphabet $\{0,1\}$.
Question of the problem: Does $L(\langle M\rangle)$ contain a word of even length?
Problem 38. 1. Consider the probability space $\Omega=\{0,1\}^{n}$ of all strings over $\{0,1\}$ of length n where each string occurs with the same probability 2^{-n}. Define a random variable $X: \Omega \rightarrow \mathbb{N}$ that gives the position of the first occurrence of the symbol 1 in a string, if 1 occurs at all. For completeness, we also define that $X\left(0^{n}\right)=0$. Positions are numbered from 1 to n. Find the expected value $E(X)$ of the random variable X and justify your answer.
2. Evaluate the sum

$$
\sum_{k=1}^{n} \frac{1}{2^{k}} k
$$

in closed form, i.e., find a formula for the sum which does not involve a summation sign. Hint: Compute a closed form of the function

$$
F(z):=\sum_{k=1}^{n} \frac{1}{2^{k}} z^{k} .
$$

and compute its first derivative.
Problem 39. Let $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$ be a Turing machine with $Q=$ $\left\{q_{0}, q_{1}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{1}\right\}$ and the following transition function δ :

δ	0	1	\sqcup
q_{0}	$q_{0} 0 R$	$q_{1} 1 R$	-
q_{1}	-	-	-

1. Determine the (worst-case) time complexity $T(n)$ and the (worst-case) space complexity $S(n)$ of M.
2. Determine the average-case time complexity $\bar{T}(n)$ and the average-case space complexity $\bar{S}(n)$ of M. (Assume that all 2^{n} input words of length n occur with the same probability, i.e., $1 / 2^{n}$.)

Problem 40. Let $\Sigma=\{0,1\}$ and let $L \subseteq \Sigma^{*}$ be the set of binary numbers divisible by 3 , i.e.,

$$
L=\left\{x_{n} \ldots x_{1} x_{0}: 3 \text { divides } \sum_{k=0}^{n} x_{k} 2^{k}\right\} .
$$

(By convention, the empty string ε denotes the number 0 and so it is in L too.)

1. Design a Turing machine M with input alphabet Σ which recognizes L, halts on every input, and has (worst-case) time complexity $T(n)=n$. Write down your machine formally. (A picture is not needed.) Hint: Three states q_{0}, q_{1}, q_{2} suffice. The machine is in state q_{r} if the bits read so far yield a binary number which leaves a remainder of r upon division by 3 . The transition from one state to another represents a multiplication by 2 and the addition of 0 or 1 .
2. Determine $S(n), \bar{T}(n)$ and $\bar{S}(n)$ for your Turing machine.
3. Is there some faster Turing machine that achieves $\bar{T}(n)<n$? (Justify your answer.)
