Problems Solved:

| 36 | 37 | 38 | 39 | 40

Name:

Matrikel-Nr.:

Problem 36. Let *L* be a language over the alphabet $\Sigma = \{0, 1\}$ that is generated by some Turing machine *N*. For which *L* is the following problem semi-decidable? For which *L* is it decidable?

Input of the problem (*instance* of the problem): the code $\langle M \rangle$ of a Turing machine M.

Question of the problem: $L(M) \cap L \neq \emptyset$?

Problem 37. Is the following problem undecidable? Justify your answer. Input of the problem (instance of the problem): The code $\langle M \rangle$ of a Turing machine with input alphabet $\{0, 1\}$.

Question of the problem: Does $L(\langle M \rangle)$ contain a word of even length?

- **Problem 38.** 1. Consider the probability space $\Omega = \{0,1\}^n$ of all strings over $\{0,1\}$ of length n where each string occurs with the same probability 2^{-n} . Define a random variable $X : \Omega \to \mathbb{N}$ that gives the position of the first occurrence of the symbol 1 in a string, if 1 occurs at all. For completeness, we also define that $X(0^n) = 0$. Positions are numbered from 1 to n. Find the expected value E(X) of the random variable X and justify your answer.
 - 2. Evaluate the sum

$$\sum_{k=1}^{n} \frac{1}{2^k} k$$

in *closed form*, i.e., find a formula for the sum which does not involve a summation sign. *Hint:* Compute a closed form of the function

$$F(z) := \sum_{k=1}^n \frac{1}{2^k} z^k.$$

and compute its first derivative.

Problem 39. Let $M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_0, F)$ be a Turing machine with $Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \sqcup\}, F = \{q_1\}$ and the following transition function δ :

- 1. Determine the (worst-case) time complexity T(n) and the (worst-case) space complexity S(n) of M.
- 2. Determine the average-case time complexity $\overline{T}(n)$ and the average-case space complexity $\overline{S}(n)$ of M. (Assume that all 2^n input words of length n occur with the same probability, i.e., $1/2^n$.)

Berechenbarkeit und Komplexität, WS2012

Problem 40. Let $\Sigma = \{0, 1\}$ and let $L \subseteq \Sigma^*$ be the set of binary numbers divisible by 3, i.e.,

$$L = \{x_n \dots x_1 x_0 : 3 \text{ divides } \sum_{k=0}^n x_k 2^k\}.$$

(By convention, the empty string ε denotes the number 0 and so it is in L too.)

- 1. Design a Turing machine M with input alphabet Σ which recognizes L, halts on every input, and has (worst-case) time complexity T(n) = n. Write down your machine formally. (A picture is not needed.) *Hint:* Three states q_0, q_1, q_2 suffice. The machine is in state q_r if the bits read so far yield a binary number which leaves a remainder of r upon division by 3. The transition from one state to another represents a multiplication by 2 and the addition of 0 or 1.
- 2. Determine S(n), $\overline{T}(n)$ and $\overline{S}(n)$ for your Turing machine.
- 3. Is there some faster Turing machine that achieves $\overline{T}(n) < n$? (Justify your answer.)