Unranked Anti-Unification and Its Application in
Software Code Clone Detection

Temur Kutsia

RISC, Johannes Kepler University Linz, Austria

Joint work with Jordi Levy and Mateu Villaret

What Are Code Clones

» Similar pieces of software code.
» Obtained by reusing code fragments.

» Quite typical practice.

Why Should Clones Be Detected?

> In general, they are harmful:
» Additional maintenance effort.
» Additional work for enhancing and adapting.
> Inconsistencies presenting fault.

Why Should Clones Be Detected?

» Extraction of similar code fragments may be required in the
tasks of

vV VvV vV Y VYVYY

program understanding

code quality analysis

aspect mining

plagiarism detection

copyright infringement investigation
software evolution analysis

code compaction

bug detection

Classification

Roy, Cordy and Koschke (2009) distinguish four types of clones:

Type 1: ldentical code fragments except for variations in
whitespace, layout and comments.

Type 2: Syntactically identical fragments except for variations
in identifiers, literals, types, whitespace, layout and
comments.

Type 3: Copied fragments with further modifications such as
changed, added or removed statements, in addition
to variations in identifiers, literals, types, whitespace,
layout and comments.

Type 4: Two or more code fragments that perform the same
computation but are implemented by different
syntactic variants.

1-3: Syntactic clones. ™\

Examples of Syntactic Clone Types

if (a >=b) { if (a >=b) {
¢ =4d+ b; // Commentl c=d+b;d=4d+ 1;
d=d+ 1;} }

else else
c =d - a; // Comment2 c=d-a

Type 1: ldentical code fragments except for variations in
whitespace, layout and comments.

Examples of Syntactic Clone Types

if (a >=b) { if (m >= n)
c=4d + b; // Commentl { // Comment1’
d=d+ 1;} y = X + n;
else x = x + 5; //Comment3
c =d - a; // Comment2 }
else

y = x - m; //Comment2’

Type 2: Syntactically identical fragments except for variations
in identifiers, literals, types, whitespace, layout and
comments.

Examples of Syntactic Clone Types

if (a >=b) { if (m >= n)
c=4d + b; // Commentl { // Comment1’
d=d+ 1;} y = X + n;
else z = 1; // Added statement
c =d - a; // Comment2 x = x + 5; //Comment3
}
else

y = x - m; //Comment2’

Type 3: Copied fragments with further modifications such as
changed, added or removed statements, in addition
to variations in identifiers, literals, types, whitespace,
layout and comments.

Generic Clone Detection Process

From Roy, Cordy, and Koschke (2009):

1. Preprocessing: Remove uninteresting code, determine source
and comparison units/granularities.

2. Transformation: Obtain an intermediate representation of the
preprocessed code.

3. Detection: Find similar source units in the transformed code.

4. Formatting: Clone locations of the transformed code are
mapped back to the original code.

5. Filtering: Clone extraction, visualization, and manual analysis
to filter out false positives.

Clone Detection Techniques

From Roy, Cordy, and Koschke (2009):

1.

Text-based: Little transformation, mostly raw source code in
the detection process.

Token-based: Transforming the source code into a sequence
of lexical “tokens”. The sequence is then scanned for
duplicated subsequences of tokens.

Tree-based: Transforming the source code into trees (parse
trees, ASTs, ...) which can then be processed using either
tree comparison or structural metrics to find clones.

Metrics-based: Gathering a number of metrics for code
fragments and then compare metrics vectors rather than code
or trees directly.

5. Graph-based: Find isomorphic subgraphs in PDGs.

6. Hybrid approaches. N\

Our ldea

1. Aiming at high precision for clones of type 3.

2. Tree-based approach (possibly combined with text- and
metrics-based)

3. In the clone detection step, use anti-unification.

Our ldea

1. Aiming at high precision for clones of type 3.

2. Tree-based approach (possibly combined with text- and
metrics-based)

3. In the clone detection step, use anti-unification.

4. Existing anti-unification based tools:

» CloneDigger (Bulychev et al. 2009).
» Wrangler (Li and Thompson, 2010).
» HaRe (Brown and Thompson, 2010).

Our ldea

1. Aiming at high precision for clones of type 3.

2. Tree-based approach (possibly combined with text- and
metrics-based)

3. In the clone detection step, use anti-unification.
4. Existing anti-unification based tools:
» CloneDigger (Bulychev et al. 2009).
» Wrangler (Li and Thompson, 2010).
» HaRe (Brown and Thompson, 2010).
5. We propose using unranked anti-unification instead of the
standard one.

Unranked Terms and Hedges

Unranked alphabet: The arity of function symbols is not fixed.

Variables: Term variables x, y, z, ... and hedge variables

X, Y, Z, ...

Terms: A term variable or a compound term of the form
f(siy---y5n)-

Hedges: A sequence si,...,s, where each s; is either a hedge

variable or a term.

Substitutions

Substitution: a mapping
» from term variables to terms,
» from hedge variables to hedges,

which is identity almost everywhere.

Terms and Substitutions

Example

fg(X), f(Y).g(a,) {X=0,Y = (ga),y),y = (a)}

—
—

Terms and Substitutions

Example

(e F(e(2).v).8(a.7(2))) (X 0.Y = (g(a).9).y = F(2)}
(D (0~
@ @ ©- @
OOO®
©) ® ©- :

Hedge Generalization

A hedge § is a generalization (anti-instance) of the hedges 5; and
S if

) and

)1

» $is more general than 5; (§ X §

» $is more general than 5, (5§ X3,

i.e., if there exist o1 and o> such that
» 501 =5 and

> §0’2 = §2.

Hedge Generalization

A hedge § is a least general generalization (Igg) of the hedges 3
and §2 if
> 5 is a generalization of §; and 3, and

» no generalization of 3; and 3 is strictly less general than S.

Minimal Complete Set of Generalizations

A minimal complete set of generalizations of 31 and % is a set G of
hedges that satisfies the properties:

Soundness: Each g € G is a generalization of both 3; and 3.

Completeness: For each generalization 5§ of 3; and Sy, there exists
g € G such that § < g.

Minimality: For each g1, q> € G, if g1 < @ then g1 = go.

The Anti-Unification Problem

Given: Two hedges 3; and 3,.

Find: The minimal complete set of generalizations of
31 and S.

Some Generalizations Might be Unexpected

Example

> What is the minimal complete set of generalizations of
g(f(a), f(a)) and g(f(a), f)?

Some Generalizations Might be Unexpected

Example

> What is the minimal complete set of generalizations of
g(f(a), f(a)) and g(f(a), f)?
» One might expect that it is {g(f(a), f(X))}.

Some Generalizations Might be Unexpected

Example

> What is the minimal complete set of generalizations of
g(f(a), f(a)) and g(f(a), f)?

» One might expect that it is {g(f(a), f(X))}.

» But it contains three elements:

Some Generalizations Might be Unexpected

Example

> What is the minimal complete set of generalizations of
g(f(a), f(a)) and g(f(a), f)?

» One might expect that it is {g(f(a), f(X))}.

» But it contains three elements:

g(f(a), f(X))
{X+— a} {X — €}

(8(F(2).7(2)) (2(f(a).)

Some Generalizations Might be Unexpected

Example

> What is the minimal complete set of generalizations of
g(f(a), f(a)) and g(f(a), f)?

» One might expect that it is {g(f(a), f(X))}.

» But it contains three elements:

(8(F(X, V), F(X))]
{X+—aY e} {X+—¢eY—a}

(8(f(2).7(2)) (g(f(a). F))

Some Generalizations Might be Unexpected

Example

> What is the minimal complete set of generalizations of
g(f(a), f(a)) and g(f(a), f)?

» One might expect that it is {g(f(a), f(X))}.

» But it contains three elements:

(8(F(X. V). F(V))]
{X+—¢Y—a} {X+—aY e}

(8(f(2).7(2)) (g(f(a). F))

Rigid Unranked Generalizations: ldea

» Emphasis on keeping the common structure, rather than on
uniform generalization of distinct parts.

» Avoiding consecutive hedge variables in the generalization.

Rigid Unranked Generalizations: ldea

More specifically:

» Given two hedges f1(51), ..., (3,) and gi(F),. ..

agm(;m)-

Rigid Unranked Generalizations: ldea

More specifically:

» Given two hedges fi(51), ..., (3,) and g1(%), ...
» Take a common subsequence of f1,...,f, and g1, ...

,gm(?m)-
7gm-

Rigid Unranked Generalizations: ldea

More specifically:

» Given two hedges fi(51), ..., (3,) and g1(%), ...
» Take a common subsequence of f1,...,f, and g1, ...

> Let it be hy,..., hg.

,gm(?m)-
7gm-

Rigid Unranked Generalizations: ldea

More specifically:
» Given two hedges f(51), ..., f(3n) and g1(%1), - .., &m(Fm).
» Take a common subsequence of f1,...,f, and g1,...,gm.
> Let it be hy,..., hg.
» Then a rigid generalization of the given hedges has a form

Xla hl(al)a X27 h2(C~I2), ey Xk*l: hk(ak)7 Xka

Rigid Unranked Generalizations: ldea

More specifically:
» Given two hedges f(51), ..., f(3n) and g1(%1), - .., &m(Fm).
» Take a common subsequence of f1,...,f, and g1,...,gm.
> Let it be hy,..., hg.
» Then a rigid generalization of the given hedges has a form

Xla hl(al)a X27 h2(C~I2), ey Xk*l: hk(ak)7 Xka

where
» X's are (not necessarily distinct) new hedge variables,
» Some X's can be omitted,
» if h; = f; = g, then §; is a rigid generalization of 5; and 7;.

Rigid Unranked Generalizations: ldea

More specifically:

>

>

>

Given two hedges f1(51), ..., (3,) and g1(F1), ..., gm(Fm).
Take a common subsequence of fi,...,f, and g1,...,&m.
Let it be hy, ..., hg.

Then a rigid generalization of the given hedges has a form

Xla hl(al)a X27 h2(C~I2), ey Xk*l: hk(ak)7 Xka

where

» X's are (not necessarily distinct) new hedge variables,

» Some X's can be omitted,

» if h; = f; = g, then §; is a rigid generalization of 5; and 7;.
The algorithm is parametrized by a rigidity function.
It decides which common subsequences are taken. Ny

Rigid Unranked Generalizations: How the ldea Works

Example

)

Rigidity function computes longest common subsequences. o e

'S

Rigid Unranked Generalizations: How the ldea Works

Example

Mg

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the ldea Works

Example

0O

Mg

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the ldea Works

Example

0O

Ly o

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the ldea Works

Example

0O

Mg o

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the ldea Works

Example

© 0 G

Mg o

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the ldea Works

Example

© 0 G

"

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the ldea Works

Example

%@

A A

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the Idea Works

Example

%@

A A

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the Idea Works

Example

® @
O®

A A

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the Idea Works

Example

® @
O®

A A

Rigidity function computes longest common subsequences. o e

e

Rigid Unranked Generalizations: How the Idea Works

Example

® @

:(‘0

000 % :G: 010 geﬂ

Rigidity function computes longest common subsequences.

Rigid Unranked Generalizations: How the Idea Works

Example

® @

J%%é% 00:0

Rigidity function computes longest common subsequences.

:‘ O

Rigid Unranked Generalizations: How the Idea Works

Example

® @

J%%é% 00:0

Rigidity function computes longest common subsequences. o e

Rigid Unranked Generalizations: How the Idea Works
24
10
® O
3 &
OO0 OO0
G O
7Ny

Rigidity function computes longest common subsequences. o e

e

Example

Rigid Unranked Generalizations: How the ldea Works

Example

Rigidity function computes longest common subsequences of length at
least 3.

Rigid Unranked Generalizations: How the ldea Works

§0066

Rigidity function computes longest common subsequences of length at
least 3.

Example

Rigid Unranked Anti-Unification Algorithm

» Anti-unification equations:
X:3&7F,

meaning: X is a generalization of § and F.

> The rule-based algorithm works on triples:
A;S; o,

where A is a set of anti-unification equations, S is a set of
already solved anti-unification equations, o is a substitution
computed so far.

Rigid Unranked Anti-Unification Algorithm: Rules

R: The rigidity function.

R-Dec-H: R-Rigid Decomposition for Hedges
{X:32G}UA S, 0 =
{Zk 82 G| 1< k<nlUA;
{Yo: 3¢ 2 gy u{Yi:si 2 g8 [1<k<n—1}U
{Y N‘\sHl A ~||q\+1}US;
U{X ’_> YO) f].(Zl)u Y17 MR} Yn—l; fn(Zn), YI‘I}7
if R(top(3), top(g)) contains a sequence fi[i1, j1] - - - fa[in, jn] such

that for all 1 < k < n, §‘,‘k = fk(gk)v E"Jk = fk(ak)r and Yp, Yi's
and Z,'s are fresh.

Rigid Unranked Anti-Unification Algorithm: Rules

R-S-H: R-Rigid Solve for Hedges
{(X:323}UA S, 0= A, {X:32§}US; o,
if R(top(8), top(g)) = 0.

R-CS1: R-Rigid Clean Store 1

R-CS2: R-Rigid Clean Store 2

A {X: e2elUS;, 0= A; S; o{X > ¢}.

Rigid Unranked Anti-Unification Algorithm: Rules

R-CS3: R-Rigid Clean Store 3

A {xa:l2r x:12r}US; 0 =
A {x:12r}US; olx— x)

R-CS4: R-Rigid Clean Store 4

A{X:ih,....lh2n,...,r}uUS; 0 =

Al h2n,. . x: h2nyUS o{X = x,...,x 0,

where n > 1 and x;'s are fresh.

Rigid Unranked Anti-Unification Algorithm: Control

» Given a rigidity function R, to compute R-generalizations of
hedges § and §, start with {X : § = g};0; Id and apply the
rules exhaustively.

Rigid Unranked Anti-Unification Algorithm: Properties

Theorem (Termination)

The algorithm terminates on any input and produces a system

0:S; 0.

Theorem (Soundness)

If the algorithm produces the derivation
{X:32%)0,ld="0;,S;0
then Xo is a rigid generalization of 51 and 3.

Theorem (Completeness)

Let g be a rigid generalization of 31 and 5,. Then the algorithm
computes a rigid anti-unifier o for X : §; £ 3 such that § < Xo.

Rigid Unranked Anti-Unification Algorithm: Example

Example

» R computes the set of longest common subsequences.
» R-generalization of the hedges f(a, a), f(c), g(f(a), f(a)) and
f(b, b), g(f(a),).

Rigid Unranked Anti-Unification Algorithm: Example

Example

» R computes the set of longest common subsequences.

» R-generalization of the hedges f(a, a), f(c),g(f(a),f(a)) and
f(b,b),g(f(a),f).

» Create the initial system:

{X : f(a,a),f(c),g(f(a),f(a)) = f(b,b),g(f(a),f)},0,Id.

Rigid Unranked Anti-Unification Algorithm: Example

Example

» R computes the set of longest common subsequences.

» R-generalization of the hedges f(a, a), f(c),g(f(a),f(a)) and
f(b,b),g(f(a),f).

» Create the initial system:

{X : f(a,a),f(c),g(f(a),f(a)) = f(b,b),g(f(a),f)},0,Id.

» Obtain two terminal systems:
L 0 {x:a2bY:f(c)&eZ:a2¢};
{X = f(x,x),Y,g(f(a), 7(2))}
2. 0,{Y :f(a,a)2 e, Z:c2b,b,U:a2¢};
{X =Y, f(2),g(f(a), f(V)

Rigid Unranked Anti-Unification Algorithm: Example

Example

» R computes the set of longest common subsequences.
R-generalization of the hedges f(a, a), f(c),g(f(a),f(a)) and
f(b,b),g(f(a),f).

Create the initial system:

{X : f(a,a),f(c),g(f(a),f(a)) = f(b,b),g(f(a),f)},0,Id.

Obtain two terminal systems:
L 0 {x:a2bY:f(c)&eZ:a2¢};
{X = f(x,x),Y,g(f(a), f(2))}
2. 0,{Y :f(a,a)2e,Z:c2 b,bU:a%¢};
{X =Y, 1(2),8(f(a), f(U))}
The store tells how to obtain each original hedge from the
generalization. ™\

v

v

v

v

Rigid Anti-Unification: Some Interesting Facts

» By choosing appropriate rigidity functions, rigid unranked
anti-unification can model various existing generalization
algorithms:

» Simple hedge anti-unification for inductive reasoning over
semi-structured documents (Yamamoto et al., 2001).

» Word anti-unification (Cicekli and Ciceckli, 2006).

» ¢-free word anti-unification (Biere, 2003).

» First-order anti-unification (Plotkin, 1972, Reynolds, 1972).

» Combination of rigid and complete (non-rigid) anti-unification
algorithms can simulate AU anti-unification (Alpuente et al.,
2008)

Rigid Anti-Unification and Clone Detection

Unranked representation of code pieces:

if (>=(a, b), if(>=(m, n),
then(=(c, +(d, b)), then(=(y, +(x, n)),
=(d, +(d, 1N, =(z, 1),
else(=(c, -(d, a)))) =(x, +(x, 5))),

else(=(y, -(x, m))))
An interesting generalization:

if(>=(y1, y2),
then(=(y3, +(y4, y2)),
Y,
=(y4, +(y4, y5))),
else(=(y3, -(y4, y)))

> {yl—a,y2—b,y3—c,yd—d,y5— 1,Y+> €}
» {y1—=my2—ny3—y,y4—xy5—5Y— =(z, 1)} o™\

Rigid Anti-Unification and Clone Detection

Rigid generalisation comes as a way to express many
(maybe all) interesting practical techniques [of clone
detection].

Anonymous referee of (Kutsia, Levy, Villaret, 2011)

Rigid Anti-Unification and Clone Detection

» Rigid anti-unification helps to detect inserted or deleted pieces
of code, which is necessary for clones of type 3.

> If we are interested in clones whose length is greater than a
predefined threshold, we can include this measure in the
definition of the rigidity function.

» The approach is modular, where most of the computations are
performed on strings. It may combine advantages of fast
textual and precise structural techniques and consider rigidity
functions modulo a given metrics.

Rigid Anti-Unification and Clone Detection

» Anti-unifiers reflect similarities between two inputs, while the
store reflects differences between them.

» The output of anti-unification can be used for comparison
utilities and for extracting a procedure. This process has a use
in code refactoring.

» Rigid anti-unification works on unranked terms that can
abstract XML documents. How to detect clones well in
XML/HTML is mentioned as one of the open problems in
clone detection research in (Roy and Cordy, 2007).

