# Unranked Anti-Unification and Its Application in Software Code Clone Detection

#### Temur Kutsia

RISC, Johannes Kepler University Linz, Austria

Joint work with Jordi Levy and Mateu Villaret



#### What Are Code Clones

- Similar pieces of software code.
- Obtained by reusing code fragments.
- Quite typical practice.



#### Why Should Clones Be Detected?

- In general, they are harmful:
  - Additional maintenance effort.
  - Additional work for enhancing and adapting.
  - Inconsistencies presenting fault.

#### Why Should Clones Be Detected?

 Extraction of similar code fragments may be required in the tasks of

- program understanding
- code quality analysis
- aspect mining
- plagiarism detection
- copyright infringement investigation
- software evolution analysis
- code compaction
- bug detection



## Classification

Roy, Cordy and Koschke (2009) distinguish four types of clones:

- Type 1: Identical code fragments except for variations in whitespace, layout and comments.
- Type 2: Syntactically identical fragments except for variations in identifiers, literals, types, whitespace, layout and comments.
- Type 3: Copied fragments with further modifications such as changed, added or removed statements, in addition to variations in identifiers, literals, types, whitespace, layout and comments.
- Type 4: Two or more code fragments that perform the same computation but are implemented by different syntactic variants.
- 1-3: Syntactic clones.



э

・ロ と ・ 望 と ・ 聞 と ・ 聞 と

Examples of Syntactic Clone Types

Type 1: Identical code fragments except for variations in whitespace, layout and comments.



Examples of Syntactic Clone Types

Type 2: Syntactically identical fragments except for variations in identifiers, literals, types, whitespace, layout and comments.

人口 医水管 医水管 医水管

Examples of Syntactic Clone Types

Type 3: Copied fragments with further modifications such as changed, added or removed statements, in addition to variations in identifiers, literals, types, whitespace, layout and comments.



(日) (四) (三) (三) (三)

#### Generic Clone Detection Process

From Roy, Cordy, and Koschke (2009):

- 1. Preprocessing: Remove uninteresting code, determine source and comparison units/granularities.
- 2. Transformation: Obtain an intermediate representation of the preprocessed code.
- 3. Detection: Find similar source units in the transformed code.
- 4. Formatting: Clone locations of the transformed code are mapped back to the original code.
- 5. Filtering: Clone extraction, visualization, and manual analysis to filter out false positives.

### **Clone Detection Techniques**

From Roy, Cordy, and Koschke (2009):

- 1. Text-based: Little transformation, mostly raw source code in the detection process.
- 2. Token-based: Transforming the source code into a sequence of lexical "tokens". The sequence is then scanned for duplicated subsequences of tokens.
- 3. Tree-based: Transforming the source code into trees (parse trees, ASTs, ...) which can then be processed using either tree comparison or structural metrics to find clones.
- 4. Metrics-based: Gathering a number of metrics for code fragments and then compare metrics vectors rather than code or trees directly.
- 5. Graph-based: Find isomorphic subgraphs in PDGs.
- 6. Hybrid approaches.



・ロット (雪) (山) (日)

## Our Idea

- 1. Aiming at high precision for clones of type 3.
- 2. Tree-based approach (possibly combined with text- and metrics-based)
- 3. In the clone detection step, use anti-unification.



## Our Idea

- 1. Aiming at high precision for clones of type 3.
- 2. Tree-based approach (possibly combined with text- and metrics-based)

A D F A B F A B F A B F

- 3. In the clone detection step, use anti-unification.
- 4. Existing anti-unification based tools:
  - CloneDigger (Bulychev et al. 2009).
  - Wrangler (Li and Thompson, 2010).
  - ► HaRe (Brown and Thompson, 2010).

## Our Idea

- 1. Aiming at high precision for clones of type 3.
- 2. Tree-based approach (possibly combined with text- and metrics-based)
- 3. In the clone detection step, use anti-unification.
- 4. Existing anti-unification based tools:
  - CloneDigger (Bulychev et al. 2009).
  - Wrangler (Li and Thompson, 2010).
  - ► HaRe (Brown and Thompson, 2010).
- 5. We propose using unranked anti-unification instead of the standard one.



Unranked alphabet: The arity of function symbols is not fixed.

- Variables: Term variables x, y, z, ... and hedge variables X, Y, Z, ...
  - Terms: A term variable or a compound term of the form  $f(s_1, \ldots, s_n)$ .
  - Hedges: A sequence  $s_1, \ldots, s_n$  where each  $s_i$  is either a hedge variable or a term.

#### Substitutions

Substitution: a mapping

- from term variables to terms,
- from hedge variables to hedges,

which is identity almost everywhere.



# Terms and Substitutions

#### Example

 $f(g(X), f(Y), g(a, y)) \qquad \{X \mapsto (), Y \mapsto (g(a), y), y \mapsto f(a)\}$ 





・ロト ・聞ト ・ヨト ・ヨト



#### Terms and Substitutions

#### Example

 $f(g, f(g(a), y), g(a, f(a))) \quad \{X \mapsto (), Y \mapsto (g(a), y), y \mapsto f(a)\}$ 



₹ 2000

・ロト ・聞ト ・ヨト ・ヨト

## Hedge Generalization

A hedge  $\tilde{s}$  is a generalization (anti-instance) of the hedges  $\tilde{s}_1$  and  $\tilde{s}_2$  if

(日)

- $\tilde{s}$  is more general than  $\tilde{s}_1$  ( $\tilde{s} \leq \tilde{s}_1$ ) and
- $\tilde{s}$  is more general than  $\tilde{s}_2$  ( $\tilde{s} \leq \tilde{s}_2$ ),

i.e., if there exist  $\sigma_1$  and  $\sigma_2$  such that

• 
$$\tilde{s}\sigma_1 = \tilde{s}_1$$
 and

• 
$$\tilde{s}\sigma_2 = \tilde{s}_2$$
.

A hedge  $\tilde{s}$  is a least general generalization (lgg) of the hedges  $\tilde{s}_1$  and  $\tilde{s}_2$  if

- $\tilde{s}$  is a generalization of  $\tilde{s}_1$  and  $\tilde{s}_2$  and
- no generalization of  $\tilde{s}_1$  and  $\tilde{s}_2$  is strictly less general than  $\tilde{s}$ .



A minimal complete set of generalizations of  $\tilde{s}_1$  and  $\tilde{s}_2$  is a set  $\mathcal{G}$  of hedges that satisfies the properties:

Soundness: Each  $\tilde{q} \in G$  is a generalization of both  $\tilde{s}_1$  and  $\tilde{s}_2$ . Completeness: For each generalization  $\tilde{s}$  of  $\tilde{s}_1$  and  $\tilde{s}_2$ , there exists  $\tilde{q} \in G$  such that  $\tilde{s} \preceq \tilde{q}$ . Minimality: For each  $\tilde{q}_1, \tilde{q}_2 \in G$ , if  $\tilde{q}_1 \prec \tilde{q}_2$  then  $\tilde{q}_1 = \tilde{q}_2$ .



#### The Anti-Unification Problem

Given: Two hedges  $\tilde{s}_1$  and  $\tilde{s}_2$ . Find: The minimal complete set of generalizations of  $\tilde{s}_1$  and  $\tilde{s}_2$ .



#### Example

What is the minimal complete set of generalizations of g(f(a), f(a)) and g(f(a), f)?



#### Example

- What is the minimal complete set of generalizations of g(f(a), f(a)) and g(f(a), f)?
- ► One might expect that it is {g(f(a), f(X))}.



#### Example

What is the minimal complete set of generalizations of g(f(a), f(a)) and g(f(a), f)?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- One might expect that it is  $\{g(f(a), f(X))\}$ .
- But it contains three elements:

#### Example

- What is the minimal complete set of generalizations of g(f(a), f(a)) and g(f(a), f)?
- One might expect that it is  $\{g(f(a), f(X))\}$ .
- But it contains three elements:





#### Example

- What is the minimal complete set of generalizations of g(f(a), f(a)) and g(f(a), f)?
- ► One might expect that it is {g(f(a), f(X))}.
- But it contains three elements:

$$\{X \mapsto a, Y \mapsto \epsilon\} \qquad \{X \mapsto \epsilon, Y \mapsto a\}$$
$$g(f(a), f(a)) \qquad g(f(a), f)$$



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

#### Example

- What is the minimal complete set of generalizations of g(f(a), f(a)) and g(f(a), f)?
- ► One might expect that it is {g(f(a), f(X))}.
- But it contains three elements:

$$\{X \mapsto \epsilon, Y \mapsto a\} \qquad \{X \mapsto a, Y \mapsto \epsilon\}$$
$$g(f(a), f(a)) \qquad g(f(a), f)$$



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Emphasis on keeping the common structure, rather than on uniform generalization of distinct parts.
- Avoiding consecutive hedge variables in the generalization.



More specifically:

• Given two hedges  $f_1(\tilde{s}_1), \ldots, f_n(\tilde{s}_n)$  and  $g_1(\tilde{r}_1), \ldots, g_m(\tilde{r}_m)$ .



More specifically:

- Given two hedges  $f_1(\tilde{s}_1), \ldots, f_n(\tilde{s}_n)$  and  $g_1(\tilde{r}_1), \ldots, g_m(\tilde{r}_m)$ .
- Take a common subsequence of  $f_1, \ldots, f_n$  and  $g_1, \ldots, g_m$ .



More specifically:

- Given two hedges  $f_1(\tilde{s}_1), \ldots, f_n(\tilde{s}_n)$  and  $g_1(\tilde{r}_1), \ldots, g_m(\tilde{r}_m)$ .
- Take a common subsequence of  $f_1, \ldots, f_n$  and  $g_1, \ldots, g_m$ .
- Let it be  $h_1, \ldots, h_k$ .



More specifically:

- Given two hedges  $f_1(\tilde{s}_1), \ldots, f_n(\tilde{s}_n)$  and  $g_1(\tilde{r}_1), \ldots, g_m(\tilde{r}_m)$ .
- Take a common subsequence of  $f_1, \ldots, f_n$  and  $g_1, \ldots, g_m$ .
- Let it be  $h_1, \ldots, h_k$ .
- Then a rigid generalization of the given hedges has a form

 $X_1, h_1(\tilde{q}_1), X_2, h_2(\tilde{q}_2), \ldots, X_{k-1}, h_k(\tilde{q}_k), X_k,$ 



More specifically:

- Given two hedges  $f_1(\tilde{s}_1), \ldots, f_n(\tilde{s}_n)$  and  $g_1(\tilde{r}_1), \ldots, g_m(\tilde{r}_m)$ .
- Take a common subsequence of  $f_1, \ldots, f_n$  and  $g_1, \ldots, g_m$ .
- Let it be  $h_1, \ldots, h_k$ .
- Then a rigid generalization of the given hedges has a form

$$X_1, h_1(\tilde{q}_1), X_2, h_2(\tilde{q}_2), \ldots, X_{k-1}, h_k(\tilde{q}_k), X_k,$$

where

- X's are (not necessarily distinct) new hedge variables,
- Some X's can be omitted,
- if  $h_i = f_j = g_l$ , then  $\tilde{q}_i$  is a rigid generalization of  $\tilde{s}_j$  and  $\tilde{r}_l$ .

More specifically:

- Given two hedges  $f_1(\tilde{s}_1), \ldots, f_n(\tilde{s}_n)$  and  $g_1(\tilde{r}_1), \ldots, g_m(\tilde{r}_m)$ .
- Take a common subsequence of  $f_1, \ldots, f_n$  and  $g_1, \ldots, g_m$ .
- Let it be  $h_1, \ldots, h_k$ .
- Then a rigid generalization of the given hedges has a form

$$X_1, h_1(\tilde{q}_1), X_2, h_2(\tilde{q}_2), \ldots, X_{k-1}, h_k(\tilde{q}_k), X_k,$$

where

- ► X's are (not necessarily distinct) new hedge variables,
- Some X's can be omitted,
- if  $h_i = f_j = g_l$ , then  $\tilde{q}_i$  is a rigid generalization of  $\tilde{s}_j$  and  $\tilde{r}_l$ .
- The algorithm is parametrized by a rigidity function. It decides which common subsequences are taken.



▲□▶ ▲@▶ ▲≧▶ ▲≧▶ = Ξ

Example



Rigidity function computes longest common subsequences.



э

Example



Rigidity function computes longest common subsequences.



э







Rigidity function computes longest common subsequences.



э







Rigidity function computes longest common subsequences.



э

Example



Rigidity function computes longest common subsequences.

![](_page_41_Picture_4.jpeg)

э

Example

![](_page_42_Figure_2.jpeg)

Rigidity function computes longest common subsequences.

![](_page_42_Picture_4.jpeg)

э

Example

![](_page_43_Figure_2.jpeg)

Rigidity function computes longest common subsequences.

![](_page_43_Picture_4.jpeg)

э

Example

![](_page_44_Figure_2.jpeg)

Rigidity function computes longest common subsequences.

![](_page_44_Picture_4.jpeg)

э

Example

![](_page_45_Figure_2.jpeg)

Rigidity function computes longest common subsequences.

![](_page_45_Picture_4.jpeg)

э

Example

![](_page_46_Figure_2.jpeg)

Rigidity function computes longest common subsequences.

![](_page_46_Picture_4.jpeg)

э

Example

![](_page_47_Figure_2.jpeg)

Rigidity function computes longest common subsequences.

![](_page_47_Picture_4.jpeg)

э

Example

![](_page_48_Figure_2.jpeg)

Rigidity function computes longest common subsequences.

![](_page_48_Picture_4.jpeg)

э

Example

![](_page_49_Figure_2.jpeg)

Rigidity function computes longest common subsequences of length at least 3.

![](_page_49_Picture_4.jpeg)

(日) (同) (日) (日)

Example

![](_page_50_Figure_2.jpeg)

Rigidity function computes longest common subsequences of length at least 3.

![](_page_50_Picture_4.jpeg)

(日) (同) (日) (日)

• Anti-unification equations:

$$X: \tilde{s} \triangleq \tilde{r},$$

meaning: X is a generalization of  $\tilde{s}$  and  $\tilde{r}$ .

The rule-based algorithm works on triples:

 $A; S; \sigma,$ 

where A is a set of anti-unification equations, S is a set of already solved anti-unification equations,  $\sigma$  is a substitution computed so far.

![](_page_51_Picture_7.jpeg)

 $\mathcal{R}$ : The rigidity function.

 $\mathcal{R}$ -Dec-H:  $\mathcal{R}$ -Rigid Decomposition for Hedges

$$\begin{split} \{X:\tilde{s} \triangleq \tilde{q}\} \cup A; \ S; \ \sigma \Longrightarrow \\ \{Z_k:\tilde{s}_k \triangleq \tilde{q}_k \mid 1 \le k \le n\} \cup A; \\ \{Y_0:\tilde{s}|_0^{i_1} \triangleq \tilde{q}|_0^{j_1}\} \cup \{Y_k:\tilde{s}|_{i_k}^{i_{k+1}} \triangleq \tilde{q}|_{j_k}^{j_{k+1}} \mid 1 \le k \le n-1\} \cup \\ \{Y_n:\tilde{s}|_{i_n}^{|\tilde{s}|+1} \triangleq \tilde{q}|_{j_n}^{|\tilde{q}|+1}\} \cup S; \\ \sigma\{X \mapsto Y_0, f_1(Z_1), Y_1, \dots, Y_{n-1}, f_n(Z_n), Y_n\}, \end{split}$$

if  $\mathcal{R}(top(\tilde{s}), top(\tilde{q}))$  contains a sequence  $f_1[i_1, j_1] \cdots f_n[i_n, j_n]$  such that for all  $1 \leq k \leq n$ ,  $\tilde{s}|_{i_k} = f_k(\tilde{s}_k)$ ,  $\tilde{q}|_{j_k} = f_k(\tilde{q}_k)$ , and  $Y_0$ ,  $Y_k$ 's and  $Z_k$ 's are fresh.

![](_page_52_Picture_5.jpeg)

A D > A D > A D > A D >

$$\mathcal{R}\text{-S-H: } \mathcal{R}\text{-Rigid Solve for Hedges}$$
$$\{X: \tilde{s} \triangleq \tilde{q}\} \cup A; \ S; \ \sigma \Longrightarrow A; \ \{X: \tilde{s} \triangleq \tilde{q}\} \cup S; \ \sigma,$$
if  $\mathcal{R}(top(\tilde{s}), top(\tilde{q})) = \emptyset.$ 

 $\mathcal{R}\text{-}\mathsf{CS1:}\ \mathcal{R}\text{-}\textbf{Rigid}\ \textbf{Clean}\ \textbf{Store}\ \textbf{1}$ 

$$\begin{array}{l} \mathsf{A}; \; \{X_1: \tilde{s} \triangleq \tilde{q}, X_2: \tilde{s} \triangleq \tilde{q}\} \cup \mathsf{S}; \; \sigma \Longrightarrow \\ \mathsf{A}; \; \{X_1: \tilde{s} \triangleq \tilde{q}\} \cup \mathsf{S}; \; \sigma\{X_2 \mapsto X_1\}. \end{array}$$

 $\mathcal{R}\text{-}\mathsf{CS2:}\ \mathcal{R}\text{-}\mathsf{Rigid}\ \mathsf{Clean}\ \mathsf{Store}\ 2$ 

$$A; \ \{X : \epsilon \triangleq \epsilon\} \cup S; \ \sigma \Longrightarrow A; \ S; \ \sigma\{X \mapsto \epsilon\}.$$

![](_page_53_Picture_6.jpeg)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 $\mathcal{R}\text{-}\mathsf{CS3:}\ \mathcal{R}\text{-}\textbf{Rigid}\ \textbf{Clean}\ \textbf{Store}\ \textbf{3}$ 

$$A; \{x_1 : I \triangleq r, x_2 : I \triangleq r\} \cup S; \sigma \Longrightarrow$$
$$A; \{x_1 : I \triangleq r\} \cup S; \sigma\{x_2 \mapsto x_1\}.$$

#### $\mathcal{R}$ -CS4: $\mathcal{R}$ -Rigid Clean Store 4

$$\begin{array}{l} \mathsf{A}; \; \{X: I_1, \ldots, I_n \triangleq r_1, \ldots, r_n\} \cup \mathsf{S}; \; \sigma \Longrightarrow \\ \mathsf{A}; \; \{x_1: I_1 \triangleq r_1, \ldots, x_n: I_n \triangleq r_n\} \cup \mathsf{S}; \; \sigma\{X \mapsto x_1, \ldots, x_n\}, \end{array}$$

where  $n \ge 1$  and  $x_i$ 's are fresh.

![](_page_54_Picture_6.jpeg)

## Rigid Unranked Anti-Unification Algorithm: Control

Given a rigidity function *R*, to compute *R*-generalizations of hedges s̃ and q̃, start with {*X* : s̃ ≜ q̃}; ∅; *Id* and apply the rules exhaustively.

![](_page_55_Picture_2.jpeg)

Rigid Unranked Anti-Unification Algorithm: Properties

#### Theorem (Termination)

The algorithm terminates on any input and produces a system  $\emptyset$ ; *S*;  $\sigma$ .

#### Theorem (Soundness)

If the algorithm produces the derivation

$$\{X: \tilde{s}_1 \triangleq \tilde{s}_2\}; \emptyset; Id \Longrightarrow^* \emptyset; S; \sigma$$

then  $X\sigma$  is a rigid generalization of  $\tilde{s}_1$  and  $\tilde{s}_2$ .

#### Theorem (Completeness)

Let  $\tilde{q}$  be a rigid generalization of  $\tilde{s}_1$  and  $\tilde{s}_2$ . Then the algorithm computes a rigid anti-unifier  $\sigma$  for  $X : \tilde{s}_1 \triangleq \tilde{s}_2$  such that  $\tilde{q} \preceq X\sigma$ .

(日)

#### Example

- $\mathcal{R}$  computes the set of longest common subsequences.
- ▶ *R*-generalization of the hedges f(a, a), f(c), g(f(a), f(a)) and f(b, b), g(f(a), f).

![](_page_57_Picture_4.jpeg)

#### Example

- $\blacktriangleright$   ${\cal R}$  computes the set of longest common subsequences.
- ▶ *R*-generalization of the hedges f(a, a), f(c), g(f(a), f(a)) and f(b, b), g(f(a), f).
- Create the initial system:

 $\{X: f(a,a), f(c), g(f(a), f(a)) \triangleq f(b,b), g(f(a), f)\}, \emptyset, Id.$ 

![](_page_58_Picture_6.jpeg)

#### Example

- $\mathcal{R}$  computes the set of longest common subsequences.
- ▶ *R*-generalization of the hedges f(a, a), f(c), g(f(a), f(a)) and f(b, b), g(f(a), f).
- Create the initial system:

 $\{X: f(a,a), f(c), g(f(a), f(a)) \triangleq f(b,b), g(f(a), f)\}, \emptyset, Id.$ 

Obtain two terminal systems:

1. 
$$\emptyset$$
, { $x : a \triangleq b, Y : f(c) \triangleq \epsilon, Z : a \triangleq \epsilon$ };  
{ $X \mapsto f(x, x), Y, g(f(a), f(Z))$ }  
2.  $\emptyset$ , { $Y : f(a, a) \triangleq \epsilon, Z : c \triangleq b, b, U : a \triangleq \epsilon$ };  
{ $X \mapsto Y, f(Z), g(f(a), f(U))$ }

![](_page_59_Picture_8.jpeg)

#### Example

- $\mathcal{R}$  computes the set of longest common subsequences.
- ▶ *R*-generalization of the hedges f(a, a), f(c), g(f(a), f(a)) and f(b, b), g(f(a), f).
- Create the initial system:

 $\{X: f(a,a), f(c), g(f(a), f(a)) \triangleq f(b,b), g(f(a), f)\}, \emptyset, Id.$ 

Obtain two terminal systems:

1. 
$$\emptyset$$
, { $x : a \triangleq b, Y : f(c) \triangleq \epsilon, Z : a \triangleq \epsilon$ };  
{ $X \mapsto f(x, x), Y, g(f(a), f(Z))$ }  
2.  $\emptyset$ , { $Y : f(a, a) \triangleq \epsilon, Z : c \triangleq b, b, U : a \triangleq \epsilon$ };  
{ $X \mapsto Y, f(Z), g(f(a), f(U))$ }

The store tells how to obtain each original hedge from the generalization.

![](_page_60_Picture_9.jpeg)

э

A D F A B F A B F A B F

Rigid Anti-Unification: Some Interesting Facts

- By choosing appropriate rigidity functions, rigid unranked anti-unification can model various existing generalization algorithms:
  - Simple hedge anti-unification for inductive reasoning over semi-structured documents (Yamamoto et al., 2001).
  - Word anti-unification (Cicekli and Ciceckli, 2006).
  - $\epsilon$ -free word anti-unification (Biere, 2003).
  - First-order anti-unification (Plotkin, 1972, Reynolds, 1972).
- Combination of rigid and complete (non-rigid) anti-unification algorithms can simulate AU anti-unification (Alpuente et al., 2008)

Unranked representation of code pieces:

$$\begin{array}{lll} \text{if}(>=(a, b), & \text{if}(>=(m, n), \\ \text{then}(=(c, +(d, b)), & \text{then}(=(y, +(x, n)), \\ =(d, +(d, 1))), & =(z, 1), \\ \text{else}(=(c, -(d, a)))) & =(x, +(x, 5))), \\ \text{else}(=(y, -(x, m))) \end{array}$$

An interesting generalization:

► { $y1 \mapsto a, y2 \mapsto b, y3 \mapsto c, y4 \mapsto d, y5 \mapsto 1, Y \mapsto \epsilon$ }

▶  $\{y1 \mapsto m, y2 \mapsto n, y3 \mapsto y, y4 \mapsto x, y5 \mapsto 5, Y \mapsto =(z, 1)\}$ 

![](_page_62_Picture_7.jpeg)

э

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Rigid generalisation comes as a way to express many (maybe all) interesting practical techniques [of clone detection].

Anonymous referee of (Kutsia, Levy, Villaret, 2011)

![](_page_63_Picture_3.jpeg)

- Rigid anti-unification helps to detect inserted or deleted pieces of code, which is necessary for clones of type 3.
- If we are interested in clones whose length is greater than a predefined threshold, we can include this measure in the definition of the rigidity function.
- The approach is modular, where most of the computations are performed on strings. It may combine advantages of fast textual and precise structural techniques and consider rigidity functions modulo a given metrics.

э

- Anti-unifiers reflect similarities between two inputs, while the store reflects differences between them.
- The output of anti-unification can be used for comparison utilities and for extracting a procedure. This process has a use in code refactoring.
- Rigid anti-unification works on unranked terms that can abstract XML documents. How to detect clones well in XML/HTML is mentioned as one of the open problems in clone detection research in (Roy and Cordy, 2007).

・ ロ ト ・ 白 ト ・ 正 ト ・ 正 ト