Problems Solved:

31	32	33	34	35

Name:

Matrikel-Nr.:

Problem 31. Define the following languages by context free grammars over the alphabet $\Sigma=\{0,1\}$.
(a) $L_{1}=\{w \mid w$ contains at least two zeroes. $\}$
(b) $L_{2}=\{w \mid w$ starts and ends with one and the same symbol. $\}$
(c) $L_{3}=\{w \mid w$ consists of an odd number of symbols and the symbol in the ceter of w is a 0.$\}$
(d) $L_{4}=L_{2} \cap L_{3}$

Problem 32. Consider the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=$ $\{a, b\}, P=\{S \rightarrow \epsilon, S \rightarrow a S b S\}$.
(a) Is $a a b a b b \in L(G)$?
(b) Is $a a b a b \in L(G)$?
(c) Does every element of $L(G)$ contain the same number of occurrences of a and b ?
(d) Is $L(G)$ regular?
(e) Is $L(G)$ recursive?

Justify your answers.
Problem 33. Let $M_{0}, M_{1}, M_{2}, \ldots$ be a list of all Turing machines with alphabet $\Sigma=\{0,1\}$. Let $w_{i}=01^{i} 0$ for all natural numbers i. Let $L=\left\{w_{i} \mid i \in\right.$ \mathbb{N} and M_{i} accepts $\left.w_{i}\right\}$ and $\bar{L}=\Sigma^{*} \backslash L$.
(a) Is L recursively enumerable?
(b) Is \bar{L} recursively enumerable?
(c) Is L recursive?
(d) Is \bar{L} recursive?

Justify your answers.
Problem 34. (a) Given a Turing machine M, construct a grammar G with the following property:

$$
\begin{equation*}
L(G) \neq \emptyset \Longleftrightarrow M \text { halts on the empty input } \epsilon \tag{1}
\end{equation*}
$$

Hint: Encode reachable configurations

of the Turing machine as the sententials forms

$$
\# x_{1} x_{2} \ldots x_{m} q y_{1} y_{2} \ldots y_{n} \#
$$

of G. Simulate transitions of the Turing machine by productions of the grammar
(b) Is it decidable if a grammar G satisfies $L(G) \neq \emptyset$? (An instance of this decision problem is a grammar coded as a bit string.) Justify your answer.
(c) Is it decidable if two grammars G_{1} and G_{2} describe the same language? (An instance of this decision problem is a bit string that encodes a pair $\left(G_{1}, G_{2}\right)$ of grammars.) Justify your answer.

Problem 35. Which of the following problems are decidable? In each problem below, the input of the problem is the code $\langle M\rangle$ of a Turing machine M with input alphabet $\{0,1\}$.

1. Is $L(M)$ empty?
2. Is $L(M)$ finite?
3. Is $L(M)$ regular?
4. Is $L(M) \subseteq\{0,1\}^{*}$?

5 . Is $L(M)$ not recursively enumerable?
6. Does M have an even number of states?

