Problems Solved:

| 31 | 32 | 33 | 34 | 35

Name:

Matrikel-Nr.:

Problem 31. Define the following languages by context free grammars over the alphabet $\Sigma = \{0, 1\}$.

- (a) $L_1 = \{ w \mid w \text{ contains at least two zeroes.} \}$
- (b) $L_2 = \{w \mid w \text{ starts and ends with one and the same symbol.} \}$
- (c) $L_3 = \{w \mid w \text{ consists of an odd number of symbols and the symbol in the ceter of } w \text{ is a } 0.\}$
- (d) $L_4 = L_2 \cap L_3$

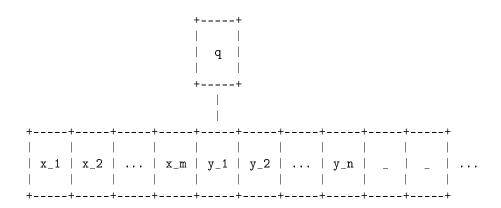
Problem 32. Consider the grammar $G = (N, \Sigma, P, S)$ where $N = \{S\}, \Sigma = \{a, b\}, P = \{S \to \epsilon, S \to aSbS\}.$

- (a) Is $aababb \in L(G)$?
- (b) Is $aabab \in L(G)$?
- (c) Does every element of L(G) contain the same number of occurrences of a and b?
- (d) Is L(G) regular?
- (e) Is L(G) recursive?

Justify your answers.

Problem 33. Let M_0, M_1, M_2, \ldots be a list of all Turing machines with alphabet $\Sigma = \{0, 1\}$. Let $w_i = 01^{i0}$ for all natural numbers *i*. Let $L = \{w_i \mid i \in \mathbb{N} \text{ and } M_i \text{ accepts } w_i\}$ and $\overline{L} = \Sigma^* \setminus L$.

- (a) Is L recursively enumerable?
- (b) Is \overline{L} recursively enumerable?
- (c) Is L recursive?
- (d) Is \overline{L} recursive?


Justify your answers.

Problem 34. (a) Given a Turing machine M, construct a grammar G with the following property:

 $L(G) \neq \emptyset \iff M$ halts on the empty input ϵ . (1)

Hint: Encode reachable configurations

Berechenbarkeit und Komplexität, WS2012

of the Turing machine as the sententials forms

 $\#x_1x_2\ldots x_mqy_1y_2\ldots y_n\#$

of G. Simulate transitions of the Turing machine by productions of the grammar.

- (b) Is it decidable if a grammar G satisfies $L(G) \neq \emptyset$? (An instance of this decision problem is a grammar coded as a bit string.) Justify your answer.
- (c) Is it decidable if two grammars G_1 and G_2 describe the same language? (An instance of this decision problem is a bit string that encodes a pair (G_1, G_2) of grammars.) Justify your answer.

Problem 35. Which of the following problems are decidable? In each problem below, the input of the problem is the code $\langle M \rangle$ of a Turing machine M with input alphabet $\{0, 1\}$.

- 1. Is L(M) empty?
- 2. Is L(M) finite?
- 3. Is L(M) regular?
- 4. Is $L(M) \subseteq \{0,1\}^*$?
- 5. Is L(M) not recursively enumerable?
- 6. Does M have an even number of states?

Berechenbarkeit und Komplexität, WS2012