Problems Solved:

26	27	28	29	30

Name:

Matrikel-Nr.:

Problem 26. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f(n):=2 n+1$.

1. Show that f is loop computable by giving a loop program that computes f.
2. Show that f is primitive recursive by giving a primitive recursive definition of f.

Problem 27. Let $S: \mathbb{N} \rightarrow\{0,1\}$ be defined by

$$
S(x)= \begin{cases}1 & \text { if } x \text { is the square of some natural number } \\ 0 & \text { otherwise }\end{cases}
$$

1. Write down a formal definition of S.
2. Show that S is primitive recursive by giving a primitive recursive definition of S.
3. Show that S is loop computable by giving a loop program that computes S.

Hint: It is OK to assume that the equality check and multiplication are primitive recursive as well as loop computable. The equality check e is given by $e(x, y)=1$ if $x=y$ and $e(x, y)=0$ otherwise Any predicate P can be encoded as a function f. We define $f(x):=1$ if $P(x)$ is true and $f(x):=0$ if $P(x)$ is false.

Problem 28. Let $f: \mathbb{N} \rightarrow_{p} \mathbb{N}$ be the partial function given by

$$
\begin{aligned}
& f(x)=y \text { such that } x=y^{2} \text { if such a } y \text { exists, } \\
& f(x) \text { is undefined, if no such } y \text { exists. }
\end{aligned}
$$

1. Show that f is while computable. Hint: You may use multiplication and equality checks in your while program, because they are known to be while computable.
2. Is f a recursive functions? (Justify your answer. If the answer is yes, give an explicit recursive definition of f.)
3. Is f loop computable? (Justify your answer.)
4. Is f a primitive recursive function?(Justify your answer.)

Problem 29. Consider the following term rewriting system:

$$
\begin{align*}
& p(x, s(y)) \rightarrow p(s(x), y) \tag{1}\\
& p(x, 0) \rightarrow x \tag{2}
\end{align*}
$$

1. Show that

$$
p(s(0), s(0)) \xrightarrow{*} s(s(0))
$$

by a suitable reduction sequence. For each reduction step, underline the subterm that you reduce, and indicate the reduction rule and the matching substitution σ used explicitly.
2. Disprove that

$$
p(p(s(0), s(0)), p(s(0), s(0))) \xrightarrow{*} s(s(0)) .
$$

Problem 30. Configurations of Turing machines can be encoded as a terms in various ways; for instance we can encode the configuration

as the term

$$
g\left(q, z, f\left(x_{1}, f\left(x_{2} \cdots f\left(x_{m}, e\right)\right)\right), f\left(y_{1}, f\left(y_{2} \cdots f\left(y_{m}, e\right)\right)\right)\right)
$$

In the picture, q is the state of the head and the symbols $x_{m}, \ldots, x_{1} ; z ; y_{1}, \ldots, y_{n} \in$ Γ describes the tape to the left / under / to the right of the head.
Show how to translate the transition function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ to a set of term rewrite rules.

1. Give a rewrite rule for each $q \in Q$ and each $c \in \Gamma$ with $\delta(q, c)=\left(q^{\prime}, c^{\prime}, L\right)$
2. Give a rewrite rule for each $q \in Q$ and each $c \in \Gamma$ with $\delta(q, c)=\left(q^{\prime}, c^{\prime}, R\right)$

Hint: It helps to draw pictures of the machine configuration before and after a transition and to translate both configurations to terms.

