Klausur 1 Berechenbarkeit und Komplexität ^{23 November 2012}

Part 1 NFSM2012

Let N be the nondeterministic finite state machine

 $(\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \nu, \{q_0\}, \{q_1, q_4\}),$

whose transition function ν is given below.

languages gives a regular language.

Name

Part 2 | Pumping2012 Let

$$\begin{split} & L_1 = \left\{ \left. a^m b^n a^{2m} \, \right| \, m, n \in \mathbb{N}, m < 1000 \right. \right\}, \\ & L_2 = \left\{ \left. a^m b^n a^{2m} \, \right| \, m, n \in \mathbb{N}, n < 1000 \right. \right\}. \end{split}$$

9 yes	Is there a regular expression r such that $L(r) = L_1$?
	$r = b^* + ab^*aa + aab^*aaaa + \dots + a^{999}b^*a^{1998}$
10 no	Is there a deterministic finite state machine M such that $L(M) = \{a, b\}^* \setminus L_2$?
	L_2 is not regular, i.e., its complement $\overline{L_2}$ is not regular, either.
11 yes 12 yes 13 yes	Is there an enumerator Turing machine G such that $Gen(G) = L_1$? Is there an Turing machine M such that $L(M) = L_1 \cup L_2$? Is there an deterministic finite state machine D such that $L(D) = L_1 \cap L_2$?
	The language $L_1 \cap L_2$ is finite and thus regular.
Let	rt 3 RecursiveEnumerable6 <i>M</i> be a Turing machine with the following property: Whenever <i>M</i> accepts a <i>cd</i> , it does so in no more than 1000 steps. Is <i>L(M)</i> necessarily recursive?
	Start M with input w und execute 1000 steps. If w has been accepted then $w \in L(M)$, otherwise $w \notin L(M)$. Therefore, $L(M)$ and $\overline{L(M)}$ are both recursively enumerable.
15 no	Is $L(M)$ necessarily finite?
	Let $M = (\{q_0\}, \{0, 1, \sqcup\}, \sqcup, \{0, 1\}, \delta, q_0, \{q_0\})$ where δ is nowhere defined. Then $L(M) = \Sigma^*$.
16 no	Let L be a recursively enumerable language. Can it be concluded that $L(M) \cap L$ is recursive?
	If M is a Turing machine that accepts everything without any computation, then $L(M) = \Sigma^*$ and thus $L(M) \cap L = L$. Thus, if the intersection $L(M) \cap L$ were recursive, it would mean that every recursively enumerable language is recursive. This is clearly not the case.

Part 4 TM2012 Let $M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_0, F)$ be a Turing machine with $Q = \{q_0, q_1, q_2\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \sqcup\}, F = \{q_2\}$. The transition function

$$\delta: Q \times \Gamma \to_P Q \times \Gamma \times \{L, R\}$$

is given by the following table.

Furthermore, let $M' = (Q, \Gamma, \sqcup, \Sigma, \delta', q_0, F)$ where δ' is (nearly) identical to δ except for the fact that $\delta'(q_1, 1)$ is undefined, i. e., δ' is given by the following

table.

δ'	0	1	${{\sqcup}}$
q_0	$(q_1, 0, R)$ $(q_0, 1, R)$ -	$(q_0, 0, R)$	$(q_2, 1, R)$
q_1	$(q_0, 1, R)$	_	_
q_2	_	_	_

17 yes	<i>Is</i> $q_0011 \vdash 0q_111 \vdash q_1001 \vdash 1q_001 \vdash 10q_11 \vdash 1q_100 \vdash 11q_00 \vdash 110q_1 \sqcup a$ computation of <i>M</i> ?
18 no	$Is \ 011 \in L(M)?$

The machine M terminates in the non-accepting state q_1 .

19	yes	
20		no
21		no
22		no

23 yes

Is L(M) a recursively enumerable language? Is $1101 \in L(M')$? Is L(M') a finite set? Is there a word $w \in \Sigma^*$ for which M does not terminate?

The machine goes into state q_1 only after it has read a 0 and after moving the head right. Thus, if the machine sees a 1 under the head in state q_1 , it is clear that the character left of this 1 is a 0, i.e. the head will only be moved at most one position to the left and then never come back to the 1 that it writes in state q_1 . Eventually, the head will arrive at a blank and thus the machine stops.

Is L(M') a recursive language?

Obviously, the head is only moved to the right, so eventually, the head will be over a blank and thus the machine terminates.

Part 5 Open2012

 $((2 \ points))$

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite state machine with $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_0, q_3\}, and transition function <math>\delta$ as given below.

1. Let X_i denote the regular expression for the language accepted by N when starting in state q_i .

Write down an equation system for X_0, \ldots, X_3 .

2. Give a regular expression r such that L(r) = L(N) (you may apply Arden's Lemma to the result of 1).

$$\begin{split} X_0 &= (0+1)X_1 + 1X_2 + \varepsilon \\ X_1 &= (0+1)X_1 + 0X_2 \\ X_2 &= 0X_3 \\ X_3 &= \varepsilon \\ r &= \varepsilon + 10 + (0+1)(0+1)^* 00 \end{split}$$