Name	Matrikel					SKZ		

Klausur 1
 Berechenbarkeit und Komplexität

23 November 2012
Part 1 NFSM2012
Let N be the nondeterministic finite state machine
$\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{0,1\}, \nu,\left\{q_{0}\right\},\left\{q_{1}, q_{4}\right\}\right)$,
whose transition function ν is given below.

\section*{| $\mathbf{1}$ | | no \quad Is $10010011001101 \in L(N) ?$ |
| :--- | :--- | :--- |}

A word $w \in L(N)$ with $|w|>1$ ends either with 11 or 00 , but never with 01 .

$\mathbf{2}$	yes	Is $001100 \in L(N)$?

Follow the states $q_{0}, q_{3}, q_{2}, q_{0}, q_{1}, q_{2}, q_{4}$.

$\mathbf{3}$		no
$\mathbf{4}$	yes	
$\mathbf{5}$	yes	
$\mathbf{6}$	yes	

Is $L(N)$ finite?
Is $L(N)=L(r)$ for the regular expression $r=((\varepsilon+1) 001)^{*}(1+00+100)$?
Is $\overline{L(N)}$ recursive?
Is there a deterministic finite state machine M with less than 100 states such that $L(M)=L(N)$?

According to the subset construction, there must be a DFSM with at most $2^{5}=32$ states.

$\mathbf{7}$	yes	
Is there a nondeterministic Turing machine $T=(Q, \Gamma, \sqcup,\{0,1\}, \delta, q, F), ~(~$		

In fact, 7 states are sufficient. We choose $\Gamma=\{0,1, \sqcup\}$, $Q=\left\{q_{0}, \ldots, q_{6}\right\} . p=q_{0}, F=q_{6}$. The transition function is (more or less) given by ν above. In each step T reads and writes the same character and always moves to the right. If T reads a blank in any of the accepting states $\left\{q_{1}, q_{4}\right\}$ of the NFSM N, it goes into the accepting state q_{6} of T, if T reads a blank when in one of the states $\left\{q_{0}, q_{2}, q_{3}\right\}$ it goes into the non-exepting state q_{5}. The Turing machine T stops in states q_{5} and q_{6}.

Does there exists a deterministic finite state machine D such that $L(D)=$ $L(N) \circ \overline{L(N)}$?
$L(N)$ and $\overline{L(N)}$ are both regular. Concatenation of two regular languages gives a regular language.

Let

$$
\begin{aligned}
& L_{1}=\left\{a^{m} b^{n} a^{2 m} \mid m, n \in \mathbb{N}, m<1000\right\} \\
& L_{2}=\left\{a^{m} b^{n} a^{2 m} \mid m, n \in \mathbb{N}, n<1000\right\}
\end{aligned}
$$

| $\mathbf{9}$ | yes | |
| :--- | :--- | :--- | Is there a regular expression r such that $L(r)=L_{1}$?

$$
r=b^{*}+a b^{*} a a+a a b^{*} a a a a+\cdots+a^{999} b^{*} a^{1998}
$$

| $\mathbf{1 0}$ | | no \quad Is there a deterministic finite state machine M such that $L(M)=\{a, b\}^{*} \backslash$ |
| :--- | :--- | :--- | :--- | L_{2} ?

L_{2} is not regular, i.e., its complement $\overline{L_{2}}$ is not regular, either.

$\mathbf{1 1}$	yes	
$\mathbf{1 2}$	yes	
$\mathbf{1 3}$	yes	

Is there an enumerator Turing machine G such that $\operatorname{Gen}(G)=L_{1}$?
Is there an Turing machine M such that $L(M)=L_{1} \cup L_{2}$?
Is there an deterministic finite state machine D such that $L(D)=L_{1} \cap L_{2}$?
The language $L_{1} \cap L_{2}$ is finite and thus regular.

Part 3 RecursiveEnumerable6
Let M be a Turing machine with the following property: Whenever M accepts a word, it does so in no more than 1000 steps.

$\mathbf{1 4}$	yes	\quad Is $L(M)$ necessarily recursive?

Start M with input w und execute 1000 steps. If w has been accepted then $w \in L(M)$, otherwise $w \notin L(M)$. Therefore, $L(M)$ and $\overline{L(M)}$ are both recursively enumerable.

\section*{| 15 | | no \quad Is $L(M)$ necessarily finite? |
| :--- | :--- | :--- |}

Let $M=\left(\left\{q_{0}\right\},\{0,1, \sqcup\}, \sqcup,\{0,1\}, \delta, q_{0},\left\{q_{0}\right\}\right)$ where δ is nowhere defined. Then $L(M)=\Sigma^{*}$.

| 16 | no Let L be a recursively enumerable language. Can it be concluded that |
| :--- | :--- | :--- | $L(M) \cap L$ is recursive?

If M is a Turing machine that accepts everything without any computation, then $L(M)=\Sigma^{*}$ and thus $L(M) \cap L=L$. Thus, if the intersection $L(M) \cap L$ were recursive, it would mean that every recursively enumerable language is recursive. This is clearly not the case.

Part 4 TM2012
Let $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$ be a Turing machine with $Q=\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma=$ $\{0,1\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{2}\right\}$. The transition function

$$
\delta: Q \times \Gamma \rightarrow_{P} Q \times \Gamma \times\{L, R\}
$$

is given by the following table.

δ	0	1	\sqcup
q_{0}	$\left(q_{1}, 0, R\right)$	$\left(q_{0}, 0, R\right)$	$\left(q_{2}, 1, R\right)$
q_{1}	$\left(q_{0}, 1, R\right)$	$\left(q_{1}, 0, L\right)$	-
q_{2}	-	-	-

Furthermore, let $M^{\prime}=\left(Q, \Gamma, \sqcup, \Sigma, \delta^{\prime}, q_{0}, F\right)$ where δ^{\prime} is (nearly) identical to δ except for the fact that $\delta^{\prime}\left(q_{1}, 1\right)$ is undefined, i.e., δ^{\prime} is given by the followig
table.

δ^{\prime}	0	1	\sqcup
q_{0}	$\left(q_{1}, 0, R\right)$	$\left(q_{0}, 0, R\right)$	$\left(q_{2}, 1, R\right)$
q_{1}	$\left(q_{0}, 1, R\right)$	-	-
q_{2}	-	-	-

| $\mathbf{1 7}$ | yes | $I s q_{0} 011 \vdash 0 q_{1} 11 \vdash q_{1} 001 \vdash 1 q_{0} 01 \vdash 10 q_{1} 1 \vdash 1 q_{1} 00 \vdash 11 q_{0} 0 \vdash 110 q_{1} \sqcup a$ |
| :--- | :--- | :--- | computation of M ?

$\mathbf{1 8}$		no \quad Is $011 \in L(M)$?

The machine M terminates in the non-accepting state q_{1}.

$\mathbf{1 9}$	yes	
$\mathbf{2 0}$		no
$\mathbf{2 1}$		no
$\mathbf{2 2}$		no

Is $L(M)$ a recursively enumerable language?
Is $1101 \in L\left(M^{\prime}\right)$?
Is $L\left(M^{\prime}\right)$ a finite set?
Is there a word $w \in \Sigma^{*}$ for which M does not terminate?
The machine goes into state q_{1} only after it has read a 0 and after moving the head right. Thus, if the machine sees a 1 under the head in state q_{1}, it is clear that the character left of this 1 is a 0 , i.e. the head will only be moved at most one position to the left and then never come back to the 1 that it writes in state q_{1}. Eventually, the head will arrive at a blank and thus the machine stops. Is $L\left(M^{\prime}\right)$ a recursive language?

Obviously, the head is only moved to the right, so eventually, the head will be over a blank and thus the machine terminates.

Part 5 Open2012
((2 points))
Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a nondeterministic finite state machine with $Q=$ $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{0,1\}, S=\left\{q_{0}\right\}, F=\left\{q_{0}, q_{3}\right\}$, and transition function δ as given below.

1. Let X_{i} denote the regular expression for the language accepted by N when starting in state q_{i}.

Write down an equation system for X_{0}, \ldots, X_{3}.
2. Give a regular expression r such that $L(r)=L(N)$ (you may apply Arden's Lemma to the result of 1).

$$
\begin{aligned}
X_{0} & =(0+1) X_{1}+1 X_{2}+\varepsilon \\
X_{1} & =(0+1) X_{1}+0 X_{2} \\
X_{2} & =0 X_{3} \\
X_{3} & =\varepsilon \\
r & =\varepsilon+10+(0+1)(0+1)^{*} 00
\end{aligned}
$$

