Problems Solved:

16	17	18	19	20

Name:

Matrikel-Nr.:

Problem 16. Find a Turing machine $M=\left(Q, \Gamma, \sqcup,\{0,1\}, \delta, q_{0}, F\right)$ such that $L(M)=\left\{1^{k} 01^{k+1} \mid k \in \mathbb{N}\right\}$. Write down Q, Γ, F and δ explicitly.
Problem 17. Let $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$ be a Turing machine with $Q=$ $\left\{q_{0}, \ldots, q_{6}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{3}\right\}$ and the following transition function δ.

δ	0	1	\sqcup
q_{0}	$q_{1} 0 R$	$q_{4} \sqcup R$	-
q_{1}	-	$q_{2} 1 R$	-
q_{2}	-	-	$q_{3} \sqcup R$
q_{3}	-	-	-
q_{4}	$q_{4} 0 R$	$q_{4} 1 R$	$q_{5} \sqcup L$
q_{5}	-	$q_{6} \sqcup L$	-
q_{6}	$q_{6} 0 L$	$q_{6} 1 L$	$q_{0} \sqcup R$

Determine the set $L(M)$ without referring to M.
Problem 18. Write down explicitly a Turing machine M over $\Sigma=\{0\}$ which computes the function $d: \mathbb{N} \rightarrow \mathbb{N}$ given by $d(n)=2 n$.
Use unary representation: A number n is represented by the string 0^{n} consisting of n copies of the symbol 0 .

Problem 19. Write down explicitly an enumerator G such that $\operatorname{Gen}(G)=$ $\left\{0^{2 n} \mid n \in \mathbb{N}\right\}$.
Since in the lecture notes it has not been formally defined, how a Turing machine with two tapes works, you may describe the transition function as

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{R, L\} \times(\Gamma \cup\{\boxtimes\})
$$

in the following way: If G is in state q and reads the symbol c from the working tape, and

$$
\delta(q, c)=\left(q^{\prime}, c^{\prime}, d, c^{\prime \prime}\right)
$$

then G goes to state q^{\prime}, replaces c by c^{\prime} on the working tape and moves the working tape head in direction d. Moreover, unless $c^{\prime \prime}=\boxtimes$, the symbol $c^{\prime \prime}$ is written on the output tape and the output tape head is moves one position forward. If, however, $c^{\prime \prime}=\boxtimes$, nothing is written on the output tape and the output tape head rests in place.
Hint: There exists a solution with only 4 states.
Problem 20. Show that the language $L=\left\{a^{m} b^{n} c^{m+n} \mid m, n \in \mathbb{N}\right\}$ over the alphabet $\Sigma=\{a, b, c\}$ is not regular.

