Problems Solved:

11	12	13	14	15

Name:

Matrikel-Nr.

Problem 11. Find a regular expression for the following (simplified) C function declaration.
identifier identifier(variable-list);
where variable-list is empty or of type

> identifier , identifier, . . .

Example: int power (x, y);
For simplicity it is allowed to use the constant identifier which is defined as follows:

$$
\text { identifier: } \begin{aligned}
: & (a+\cdots+z+A+\cdots+Z) \\
& (a+\cdots+z+A+\cdots+Z+0+\cdots+9)^{*}
\end{aligned}
$$

Note that there may be arbitrarily many spaces before and after any of the tokens, i.e., before and after identifiers, parentheses, commas and semicolons.

Problem 12. Let M_{1} be the DFSM with states $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ whose transition graph is given below. Determine a regular expression r such that $L(r)=L\left(M_{1}\right)$. Show the derivation of the the final result by the technique based on Arden's Lemma (see lecture notes).

Problem 13. Let r be the following regular expression.

$$
a \cdot a \cdot(b \cdot a)^{*} \cdot b \cdot b^{*}
$$

Construct a nondeterministic finite state machine N such that $L(N)=L(r)$. Show the derivation of the result by following the technique presented in the proof of the theorem Equivalence of Regular Expressions and Automata (see lecture notes).

Problem 14. Is the language $L:=\left\{\left(a b^{m}\right)^{n} \mid m, n \in \mathbb{N} \backslash\{0\}\right\}$ regular? Draw the transition graph of an automaton whose automata language is L or prove that L is not regular.

Problem 15. Show that the language $L=\left\{a^{m} b^{n} \mid m, n \in \mathbb{N} \wedge m \geq 2 n\right\}$ is not regular.

