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CHAPTER 2

COOPERATING DECISION PROCEDURES

In this chapter a method for combining decision procedures for

several theories into a single decision procedure for the combination

of the theories is described. The method, developed by Nelson and

Oppen [18], is applicable to disjoint quantifier-free theories. We

give a new and simpler proof of correctness of the algorithm. In fact,
the q ~ginal proof given by Nelson and Oppen is not totally correct.

2.1. First-order Theories

First, we introduce the basic logical notions which we will use in

the subsequent chapters. We do not give an elaborated presentation of
the subject but refer to Buchberger [06] for details. Precise defi

nitions may also be found in any standard logic book, Hermes [12], for

instance.

The theories we are dealing with are formalized in first-order

predicate logic with equality. A first-order theory is a formal system

T such that the language L(T) of T is a first-order language and the

axioms of T are the logical axioms of L(T) and certain further axioms,

called the nonlogical axioms. The logical symbols (negation), v

(disjunction), & (conjunction), => (implication), (equivalence),

(equality), the existential quantifier 3 and the universal

quantifier ~V’ are common to all theories. In order to specify a

theory we have only to specify its nonlogical symbols and its

nonlogical axioms.
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The description of the semantics of a first-order language L i5

done by specifying a nonempty set U, called the universe, and ~

interpretation function I, which is defined on variables, function

symbols and predicate symbols. I assigns an element of U to each

variable, an n-ary function over U to each n-ary function symbol and

an n-ary predicate over U to each n-ary predicate symbol in L.

A model of a theory T is a universe U together with an interpreta

tion I for L(T) in which all the nonlogical axioms of T are valid. A

formula F is valid in T if it is valid in every model of T (if it is a

“logical consequence” of the nonlogical axioms of T). A formula F is

satisfiable in T if there is some model of T in which F is valid.

The decision problem for a theory T is as follows: given a formula

F in T, decide whether F is valid in T or not. A decision procedure

for T is an algorithm which determines whether a formula F is valid in

T. We are concerned with decision procedures for quantifier-free

theories. A quantifier-free theory is a theory whose formulas do not

contain quantifiers. The decision problem for a quantifier-free theory

T can be reduced to the problem of testing the satisfiability of a

conjunction of T-literals (A literal is an atomic formula or a

negation of an atomic formula, a T—literal is a literal of L(T). We

will also use the notions T-term and T-formula in the same sense):

A formula F is valid in T if and only if ‘-F is unsatisfiable in

T. But ~-F can be put into disjunctive normal form, that is, there

are formulas F1, ... , F~ such that ‘~F is equivalent to (F1 v

v F~) and Fi is a conjunction of literals for each i such that

1~i~n. Then ‘j-F is unsatisfiable if and only if F~ is unsatisfiable

for each i such that 1~i~n. Thus, in order to test the satis

fiability of ~ it suffices to test the satisfiability of each

conjunction F1.

A decision procedure which determines the satisfiability of a conjunc

tion of T—literals is called a satisfiability procedure for T.

In the next section we will delineate a method for combining

satisfiability procedures for (quantifier-free) theories into a satis

fiability procedure for their combination. If S and T are theories,
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L then the combination of S and T is the theory S’-’T whose set ofis
and ~ ponlogical symbols is the union of the sets of the nonlogical symbols

of S and T and whose set of nonlogical axioms is the union of the setsin Ct 1

0 each of nonlogical axioms of S and T.

ol and 6

preta. 2:2. Examples of Equality Propagation

lid. A

t is a In the sequel R denotes the (quantifier-free) theory of real num

a F is bers under + and ~, A the (quantifier-free) theory of arrays under

I. store and select, L the (quantifier-free) theory of list structures

~ormula under cons, car, cdr and atom and EQ the (quantifier-free) theory of

cedure equality with uninterpreted function symbols. These theories are

lid in treated in more detail in the following chapters. For the moment let

r-free us assume that we are given satisfiability procedures, denoted S(R),

do not S(A), S(L) and S(EQ), respectively, for these theories. Besides we

theory assume that each satisfiability procedure has the ability to detect
,‘ of a certain equalities which are a logical consequence of the input

or a formula. Of course, this is no restriction since determinining whether

T). We a formula G follows from F can be done by checking whether F & ~-G is

): unsatsifiable (and this can be done by any satisfiability procedure).
The essential point is, that a satisfiability procedure should have

ble in the ability to detect •certain equalities efficiently.

there In this section we illustrate how to combine S(R), S(A), S(L) and
S(EQ) into satisfiability procedures for the combination of individual

h that theories. Consider the conjunction F

fiable

satis- x’~y & y~x+car(cons(O,x)) & f(h(x)-h(y))=c & f(O)≠c.

F each
This formula contains the arithmetic symbols +, ~ and the arith

metic constant 0, the list symbols car and cons and uninterpreted

njunc- function symbols f and h and thus falls within the theory RuL~_EQ.
Terms containing symbols of different theories are also called “mixed”

bining terms. Since the formula above contains “mixed” terms, none of the

satis- satisfiability procedures S(R), S(L) or S(EQ) is applicable to it.

ones, The first step in processing F is to make F homogeneous. We
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construct three conjunctions FR, FL and FEQ such that FR contains Only
arithmetic literals, FL only list expressions, FEQ only uninterpreted

function symbols and variables and such that F is satisfiable if and

only if FR & FL & FEQ is satisfiable. We do this by introducing n~

variables to replace terms of the wrong type and adding equalitie5

defining these variables. The second conjunct in the formula above,

for instance, would be an arithmetic literal except that it contains

the term car(cons(O,x)). Therefore car(cons(O,x)) is replaced by a new

variable, say vi, and the equality vi=car(cons(O,x)) is added to the

conjunction. By continuing in this manner we eventually obtain the

following three conjuncts:

R FL FEQ

x~y v1=car(cons(v2,x)) f(v3)=c

y~x+v1 v4=h(x)

V20 v5=h(y)
v3=v4-v5 f(v2)*c

Now we can test the satisfiability of each of the conjuncts by using

the appropriate satisfiability procedure. In our example we find that

each of the conjuncts is satisfiable for itself, whereas the original

conjunction is unsatisfiable as one easily sees. Therefore some

interaction between the satisfiability procedures has to take place.

The individual decision procedures interact by “propagating

equalities” (hence the name of the technique). Whenever some decision

procedure deduces a new equality between variables it transmitts this

equality to the other theories. Continuing in this way we may detect

some inconsistency. In the example above S(L) deduces that v~=v~. The

equality is propagated and added as a new conjunct to the other

formulas. Then S(R) deduces x=y and propagates it. S(EQ) in

continuation deduces v4=v5 which enables S(R) to infer that v2=v3.

Finally S(EQ) detects an inconsistency and returns “unsatisfiable”.

The process of deducing and propagating equalities is shown below.
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~ oniy FR FL FEQ
)reted
tf and x’~y vl=car(cons(v2,x)) f(v3)=c

ig new y~x+vi. v4=h(x)

Iitjes V20 v5=h(y)
3bove, V3V4V5 f(v2)≠c

ltajns
a flew V1V2

0 the X3~

fl the v4v5
V2V3

“unsati sfiable”

it is clear that if one of the conjunctions FR, FL or FEQ becomes

unsatisfiable, the original conjunction must be unsatisfiable too. The

converse, that the original formula is satisfiable if the equality

propagation process detects no inconsistency, need not hold as the

following example shows.

Let F be the formula

using select(store(v,i,e),j)x & select(v,j)y & —x~e & ‘-x~y.

that

ginal Here v denotes a (one—dimensional) array, store(v,i,e) denotes the

some array with i—th component e and with j-th component select(v,j) for

lace. j≠i and select(v,j) denotes the element at location j in the array v.

ating F is an RvA—formula. Splitting the formula into its homogeneous parts

ision we obtain

this

etect FA FR

• The

other select(store(v,i,e),j)X

) in select(v,j)y
2V3.

ble’~. Both formulas are satisfiable and none of the two conjunctions entails
- an equality between variables. Therefore propagation of equalities
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does not yield an inconsistency although the original formula j~

unsatisfiable. However, the conjunction FA implies a disjunction ~

equalities between variables, namely x=e v x=y. In this situation

case—splitting is required. Each equality appearing in the disjunctj0~

is adjoined to FR alone. First, we add x=e as a new conjunct to FR and

S(R) returns “unsatisfiable”. Then we add x=y to FR and again S(R’)

returns “unsatisfiable”. In both cases S(R) has detected an

inconsistency, thereby showing that the original formula j~

unsatisfiable. We are ready now to formulate the general equality

propagation procedure.

2.3. The Equality Propagation Procedure

Let S and T be disjoint, decidable, stably—infinite, quantifier-

free theories. (A theory is called stably-infinite if any quantifier-

free formula in the theory has an infinite model if it has any model).

Thus S and T have no common nonlogical symbols. Suppose furthermore,

that we are given satisfiability procedures for both S and T.

Besides, we presuppose that the satisfiability procedures have the

additional ability to determine whether an equality x=y between

variables follows from the input formula F. This is no restriction

since deciding whether x=y follows from F is equivalent to determining

whether F & x≠y is unsatisfiable (and each satisfiability procedure

can do this). However, this method is very costly and for specific

satisfiability procedures better methods of detecting equalities

between variables can be found. We will describe a method, called

equality propagation, which combines the satisfiability procedures for

S and T into a satisfiability procedure for the combination SuT of S

and T. We describe the method for the combination of two theories but

the algorithm can easily be generalized to more than two theories. The

method is due to Nelson and Oppen [18].
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‘mula ~5 JJ~ propagation procedure
Ctj~~ of

• Input: F, a conjunction of S~_,T—literals.
itljatj0
• Output: “Unsatisfiable” if F is unsatisfiable (in S’iT), “satisfiable”
Junction

otherwi Se.
o FR and

~in S(R
Method: We make use of the procedure split(F) described below. The

1 algorithm is as follows.iu,a is

equal ity
1. (FS,FT):split(F).

2. Using the satisfiability procedures for S and T respectively
decide whether F5 or FT is unsatisfiable. If either F5 or FT is

unsatisfiable return “unsatisfiable”:

3. [Equality propagation] If either F5 or FT implies some equality

between variables not implied by the other, then add the
it if icr.

itifier- equality as a new conjunct to the one that does not imply it.
Go to step 2.

model).
iermore, 4. [Case split necessary] If either F~ or FT implies a disjunction

and T u~=v~ v .... v un=vn of equalities between variables, without

ave the implying one of the equalities alone, then apply the procedure

between recursively to the n formulas F~ & FT & U1V[, ...,

.riction F~ & FT & u~=v~. If any of these formulas are satisfiable,
return “satisfiable”. Otherwise return “unsatisfiable”.

rmi fling
5. Return “satisfiable”.

ocedure

pecific

alities

called

res for

iT of S

ies but

es. The
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Splitting a formula into its homogeneous parts

Input: F, a conjunction of SuT-literals.

Output: A pair of formulas (FS,FT) such that F~ is a conjunction of
S—literals, FT a conjunction of T—literals and F is satisfiable j~

and only if F~ & FT is satisfiable.

Method: The heart of the method is to replace terms of the wrong type

by new variables. The algorithm uses the procedure tsymbol(F).

L(S) denotes the language of a theory S, lit(F) denotes the set of

literals ocurring in F. The algorithm is as follows.

split (F)

F~: =true

FT: =true
while lit(F)~ do

begin

select Gelit(F)

Lit(F) :=l tt(F)- {G}

p:=tsymbol (G)

wlg assume peL(S)

otherwise interchange S and T in

begin

G’ :=G

while G1 contains some subterm t which is not

an S—term do

begin

G’:=result of replacing each occurence

of t in G by a new variable v

lit(F):lit(F).’ {vt}

end

add G’ as new conjunct to F5

end

end

return (FS,FT)
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tsymbol (F)
if F=p(ti,...tn)

then p

elseif F-G
-iofl Of

able ~ then tsymbol (G)

ig type 2.4.AnalYSiS of the Algorithm

Jol(F),

set of The complexity of the algorithm depends on the complexity of the
individual decision algorithms and is dominated by the maximum of the

complexities of the satisfiability procedures for S and for T.

Detailed results may be found in Oppen [20].

The equality propagation in step 3 may be realized as follows.

Take an equality x=y and determine whether it follows from F5 or FT.

If i.t follows from one formula but not from the other add it to the

one which does not imply it. Otherwise take some other equality and
repeat the process. The process terminates since there is only a

finite number of equalities between variables. In practice more effi

cient methods of propagating equalities are possible. Specific methods

depend on the particular theories under consideration.

A similar strategy is applicable in step 4 since there are also

only finitely many disjunctions of equalities between variables. Step

4 is very costly and the fact whether case-splitting is required or

npt plays an important role. Case—splitting may only be caused by so-

called non-convex formulas. A formula is called non—convex if it

implies some disjunction of equalities between variables ulvl v ... V

Unvn without implying one of the equalities alone, otherwise a
formula is called convex. A theory S is called convex if every

conjunction of S-literals is convex. If we combine convex theories

case-splitting is not required. It might also be fruitful to analyze

whether certain strategies of selecting the disjunctions minimize the

expenses for case-splitting.

In Chapter 3 and Chapter 4, respectively, we will prove that the

theories R and E are convex. The example in Section 2.2. shows that A
is non—convex.
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Opppen [20] proves that if S and T are convex (quantifier_f~~~

theories with polynomial satisfiability problems, then testing th~
satisfiability of a conjunction of SuT-literals, by using the method

described above, also requires polynomial time.

2.5.Correctness of the Procedure

In this section we give a proof of correctness of the procedure,

Our proof is based on Robinson’s Consistency Theorem and is simpler

than the proof given by Nelson and Oppen [18]. Besides, Lemma 1 in

Nelson and Oppen [18, p.253] is not correct.

The algorithm always terminates since each repetition of step 3 or

recursive call in step 4 adjoins an equality to either F~ or FT which

was not a logical consequence of the formula before. This can happen

at most n—i times where n is the number of variables appearing in

F5 or FT initially.

It is clear that the procedure is correct if it returns

“unsatisfiable”. We have to prove that the procedure is also correct

if it returns “satsifiable”. The proof requires the lemma given below.

A parameter of a formula F is any nonlogical symbol which occurs

in F or any variable which occurs free in F. For example, the

parameters of x~y v ~ z:f(z)<g(z) are x, y, f, g and ~. A formula is

called simple if its only parameters are variables. For example,

x=y v y≠z and ~ x:x≠y are simple formulas but x~y and ~ x:f(x)=x are

not. An unquantified simple formula is a propositional formula whose

atomic formulas are equalities between variables. The next leninia

characterizes quantified simple formulas.

Lemma 1: Let F be a quantified simple formula. Then there is some

unquantified simple formula G such that F and G are equivalent in

each infinite interpretation I. G may be chosen so that

V(G)cV(F). (V(G) denotes the set of all nonlogical symbols which

occur in G).

Proof: Suppose F is of the form 3 x:H, where H is a formula such that

the variable x occurs free in H. Let H’ be the formula resulting
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‘~free from H by first replacing each equality x=x by “true” and
ng ~ replacing each negation of an equality x≠x by “false”, and by

method replacing any remaining equality involving x by “false”. Let F’ be
the formula (H’ v H[x/v1j v ... v H[x/v~j), where V:=Cvl,...vn}=

V(F)-{x}. (Note that replacing x by some other variable Vj may

cause some bounded occurence of Vj to be renamed. This does not

effect the considerations below).

We claim that F and F’ are equivalent in each infinite

edure, interpretation I. The proof proceeds in two steps:

impler 1) We show that every infinite model of F is a model of F’. Assume
1 ~ that I is a model of F (abbreviated by ~ ~ F) and that I is

infinite. We have

p3 or ~I F if~ ~ ~ x:H iff for some element a in the

which universe ~i’ H, where I’ is such that
happen I(y)=I’(y) for y≠x and I(x)=a.

ng in We distinguish two cases:
a) I’(vi)I’(x) for some i, such that 1~i~n.

?turn$ Then ~ H implies that ~ H[x/v~]. Since I(v)1’(v)

)rrect for all variables in H{x/vj] we get ~i H[x/v~]. The asser

)elow. tion ~ F’ follows immediately.

)CCUrS b) i’(x)≠I’(vj) for all i, such that 1~i~n.

the In this case we can show that ~ ~‘ H’ which again yields

la is ~I F’.

Lmple, 2) We now show that every infinite model of F’ is a model of F.

x are Assume that I is an infinite model of F’. Again we distinguish

whose two cases in order to show that I satisfies F.

lemma a) ~i H[x/vj j for some i, such that l~i~n.
Define I’(y):=I(y) for y*x and I’(x):I(vj). It is readily

seen that I’ satisfies H. This implies that I satisfies

some 3 x:H since I’ differs from I only in x.

nt in b) Assume that H’ is valid in I.

that Define I’(y):I(y) for y≠x and I’(x):a, where a is such

which that I(vi)*a, for all i such that 1~i~n. It is possible to
select such an element a because the universe is infinite.

Looking at the definition of H’ it is easily seen that I’ is

that a model for H. Thus I is a model for F.

Iting
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By repeatedly eliminating quantifiers in that manner we eventual1

obtain a simple quantifier—free formula G which is equivalent tO1

in each infinite interpretation and has the additional prope~~1

that V(G)C V(F).

The proof of correctness is based on the following theorem.

Theorem 2: (Robinson’s Consistency Theorem)

Let F1 and F2 be formulas. F1 & F2 is unsatisfiable if and only

there is some formula A such that V(A)c V(F1)r~V(F2) and

F1~A and F2~—A.

For a proof of the theorem see Hermes [12, chapter VIII].

We now complete the proof of correctness. First consider the case

that the procedure returns “satisfiable” from step 5. This signifies

that F5 and FT are both satisfiable and convex and imply the same

equalities between variables. Assume that F5 & FT is unsatisfiable. By

Theorem 2 there must be some formula A such that F5~A, FT~’-A and

V(A)CV(FS)1~V(FT); S and T are disjoint theories. Therefore A is a
simple formula. (Hence we know that A contains only variables). In any

infinite model A is equivalent to A’, where A’ is unquantified and

V(A’)C..V:=V(FS)t’\V(FT) (by Lemma 1).
Define E1:={x=y:xEV, yEV, x=y follows from FS} and E2:={x≠y: XEV,

yeV, x=y does not follow from Fs}. Let E be the conjunction of all

literals in E1 and E2,and let E’ be the conjunction of all literals in

E2. We claim that either A’ follows from E or ‘-A’ follows from E and

that both F5 & E’ and FT & E’ are satisfiable.

First we prove that either A’ or ‘-A’ follows from E. We “evaluate”
A’ by replacing any literal of E1 or E2 by “true” and any other

literal by “false”. In that way we can decide whether E~=A’ or

E ~=‘-A’. Without loss of generality we assume that E~A’.

Next we prove that FS & E’ is satisfiable, the assertion that

FT & E’ is satisfiable is handled analogously. Assume that F5 & E’ iS

unsatisfiable. This is equivalent to saying that F5~—E’, or

otherwise stated that F~~’-(v1≠u1 & ... & vk≠uk), where the literalS

vj≠ui are the literals in E’. We transform this further and get
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FS~(v1=~11 V •.. V Vk=Uk). Since F~ is convex there has to be some i

~t such that 1~i~k and Fs~Vi=Ui. This is a contradiction, thus F5 & E’
has to be satisfiable.

°Pert~
S and T are stably-infinite theories. Thus there are infinite

models I and J for F~ & E and FT & E respectively. From E~A’ we

obtain that J satisfies A’, but this contradicts that J satisfies —A.

Therefore FS & FT has to be satisfiable.

By induction on the depth of recursion it follows that the proce

dure is correct if it returns “satisfiable” from step 4. This comple

tes the proof of correctness.

2.6. Implementation of the Procedure

e case

nifies The procedure has been implemented in Standard LISP on a

~ sa~ IBM 370/155. The current implementation employs decision procedures

le. By for the quantifier-free theory of arithmetic under addition and order

—A and and for the quantifier-free theory of equality with uninterpreted

~ is function symbols. These decision procedures are described in Chapter 3

In any and Chapter 4, respectively. In Chapter 6 examples are given which

~d and illustrate the use of the procedure. The appendix contains a documen
tation of the LISP programs.

xCV,
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