THE NELSON-OPPEN METHOD FOR COMBINING SPECIAL THEOREM FROVERS:

IMPLEMENTATION AND APPLICATION TO PROGRAM VERIFICATION

DIPLOMARBEIT

ZUR ERLANGUNG DES AKADEMISCHEN GRADES
"DIPLOMINGENIEUR"

IN DER STUDIENRICHTUNG TECHNISCHE MATHEMATIK

> eingereicht von

LEO BACHMAIR
angefertigt am Institut fü Mathematik
der technisch-naturwissenschaftlichen Fakultät
der Johannes Kepler Universität Linz
eingereicht bei: 0. Univ. Prof. Dr. B. Buchberger

Linz im November 1982

CHAPTER 2

COOPERATING DECISION PROCEDURES

In this chapter a method for combining decision procedures for several theories into a single decision procedure for the combination of the theories is described. The method, developed by Nelson and Oppen [18], is applicable to disjoint quantifier-free theories. We give a new and simpler proof of correctness of the algorithm. In fact, the original proof given by Nelson and Oppen is not totally correct.
2.1. First-order Theories

First, we introduce the basic logical notions which we will use in the subsequent chapters. We do not give an elaborated presentation of the subject but refer to Buchberger [06] for details. Precise definitions may also be found in any standard logic book, Hermes [12], for instance.

The theories we are dealing with are formalized in first-order predicate logic with equality. A first-order theory is a formal system T such that the language $L(T)$ of T is a first-order language and the axioms of T are the logical axioms of $L(T)$ and certain further axioms, called the nonlogical axioms. The logical symbols ~ (negation), v (disjunction), \& (conjunction), \Rightarrow (implication), 引 (equivalence), $=$ (equality), the existential quantifier \exists and the universal quantifier \forall are common to all theories. In order to specify a theory we have only to specify its nonlogical symbols and its nonlogical axioms.

The description of the semantics of a first-order language L is done by specifying a nonempty set U, called the universe, and an interpretation function I, which is defined on variables, function symbols and predicate symbols. I assigns an element of U to each variable, an n-ary function over U to each n-ary function symbol and an n-ary predicate over U to each n-ary predicate symbol in L.

A model of a theory T is a universe U together with an interpretation I for $L(T)$ in which all the nonlogical axioms of T are valid. A formula F is valid in T if it is valid in every model of T (if it is a "logical consequence" of the nonlogical axioms of T). A formula F is satisfiable in T if there is some model of T in which F is valid.

The decision problem for a theory T is as follows: given a formula F in T, decide whether F is valid in T or not. A decision procedure for T is an algorithm which determines whether a formula F is valid in T. We are concerned with decision procedures for quantifier-free theories. A quantifier-free theory is a theory whose formulas do not contain quantifiers. The decision problem for a quantifier-free theory T can be reduced to the problem of testing the satisfiability of a conjunction of T-Fiterals (A literal is an atomic formula or a negation of an atomic formula, a T-literal is a literal of $L(T)$. We will also use the notions T-term and T-formula in the same sense):

A formula F is valid in T if and only if $\sim F$ is unsatisfiable in T. But $\sim F$ can be put into disjunctive normal form, that is, there are formulas F_{1}, \ldots, F_{n} such that $\sim F$ is equivalent to ($F_{1} \vee \ldots$ $\ldots v F_{n}$) and F_{i} is a conjunction of literals for each i such that $1 \leqslant i \leqslant n$. Then $\sim F$ is unsatisfiable if and only if F_{i} is unsatisfiable for each i such that $1 \leqslant i \leqslant n$. Thus, in order to test the satisfiability of $\sim \mathcal{F}$, it suffices to test the satisfiability of each conjunction F_{i}.

A decision procedure which determines the satisfiability of a conjunction of T-literals is called a satisfiability procedure for T.

In the next section we will delineate a method for combining satisfiability procedures for (quantifier-free) theories into a satisfiability procedure for their combination. If S and T are theories,
then the combination of S and T is the theory SUT whose set of nonlogical symbols is the union of the sets of the nonlogical symbols of S and T and whose set of nonlogical axioms is the union of the sets of nonlogical axioms of S and T.

2.2. Examples of Equality Propagation

In the sequel R denotes the (quantifier-free) theory of real numbers under + and \leqslant, A the (quantifier-free) theory of arrays under store and select, L the (quantifier-free) theory of list structures under cons, car, cdr and atom and EQ the (quantifier-free) theory of equality with uninterpreted function symbols. These theories are treated in more detail in the following chapters. For the moment let us assume that we are given satisfiability procedures, denoted $S(R)$, $S(A), S(L)$ and $S(E Q)$, respectively, for these theories. Besides we assume that each satisfiability procedure has the ability to detect certain equalities which are a logical consequence of the input formula. Of course, this is no restriction since determinining whether a formula G follows from F can be done by checking whether $F \& \sim G$ is unsatsifiable (and this can be done by any satisfiability procedure). The essential point is, that a satisfiability procedure should have the ability to detect certain equalities efficiently.

In this section we illustrate how to combine $S(R), S(A), S(L)$ and $S(E Q)$ into satisfiability procedures for the combination of individual theories. Consider the conjunction F
$x<y \& y \leqslant x+\operatorname{car}(\operatorname{cons}(0, x)) \& f(h(x)-h(y))=c \& f(0) \neq c$.

This formula contains the arithmetic symbols + , \& and the arithmetic constant 0 , the list symbols car and cons and uninterpreted function symbols f and h and thus falls within the theory RuLuEQ. Terms containing symbols of different theories are also called "mixed" terms. Since the formula above contains "mixed" terms, none of the satisfiability procedures $S(R), S(L)$ or $S(E Q)$ is applicable to it.

The first step in processing F is to make F homogeneous. We
construct three conjunctions F_{R}, F_{L} and $F_{E Q}$ such that F_{R} contains only arithmetic literals, F_{L} only list expressions, $F_{E Q}$ only uninterpreted function symbols and variables and such that F is satisfiable if and only if F_{R} \& $F_{L} \& F_{E Q}$ is satisfiable. We do this by introducing new variables to replace terms of the wrong type and adding equalities defining these variables. The second conjunct in the formula above, for instance, would be an arithmetic literal except that it contains the term $\operatorname{car}(\operatorname{cons}(0, x))$. Therefore $\operatorname{car}(\operatorname{cons}(0, x))$ is replaced by a new variable, say v_{1}, and the equality $v_{1}=\operatorname{car}(\operatorname{cons}(0, x))$ is added to the conjunction. By continuing in this manner we eventually obtain the following three conjuncts:

F_{R}	F_{L}	$F_{E Q}$
$x \leqslant y$	$v_{1}=\operatorname{car}\left(\operatorname{cons}\left(v_{2}, x\right)\right)$	$f\left(v_{3}\right)=c$
$y \leqslant x+v_{1}$		$v_{4}=h(x)$
$v_{2}=0$		$v_{5}=h(y)$
$v_{3}=v_{4}-v_{5}$		$f\left(v_{2}\right) \neq c$

Now we can test the satisfiability of each of the conjuncts by using the appropriate satisfiability procedure. In our example we find that each of the conjuncts is satisfiable for itself, whereas the original conjunction is unsatisfiable as one easily sees. Therefore some interaction between the satisfiability procedures has to take place. The individual decision procedures interact by "propagating equalities" (hence the name of the technique). Whenever some decision procedure deduces a new equality between variables it transmitts this equality to the other theories. Continuing in this way we may detect some inconsistency. In the example above $S(L)$ deduces that $v_{1}=v_{2}$. The equality is propagated and added as a new conjunct to the other formulas. Then $S(R)$ deduces $x=y$ and propagates it. $S(E Q)$ in continuation deduces $v_{4}=v_{5}$ which enables $S(R)$ to infer that $v_{2}=v_{3}$. Finally $S(E Q)$ detects an inconsistency and returns "unsatisfiable". The process of deducing and propagating equalities is shown below.
s only

sreted

if and ig new lities above, itains a new ;0 the n the
$F_{R} \quad F_{L} \quad F_{E Q}$

$x<y$	$v_{1}=\operatorname{car}\left(\operatorname{cons}\left(v_{2}, x\right)\right)$	$f\left(v_{3}\right)=c$
$y<x+v_{1}$		$v_{4}=h(x)$
$v_{2}=0$	$v_{5}=h(y)$	
$v_{3}=v_{4}-v_{5}$	$f\left(v_{2}\right) \neq c$	

$$
\begin{array}{ll}
\mathrm{x}=\mathrm{y} & \mathrm{v}_{1}=\mathrm{v}_{2} \\
v_{2}=v_{3} & v_{4}=v_{5}
\end{array}
$$

It is clear that if one of the conjunctions F_{R}, F_{L} or $F_{E Q}$ becomes unsatisfiable, the original conjunction must be unsatisfiable too. The converse, that the original formula is satisfiable if the equality propagation process detects no inconsistency, need not hold as the following example shows.

Let F be the formula

$$
\operatorname{select}(\operatorname{store}(v, i, e), j)=x \& \text { select }(v, j)=y \& \sim x \leqslant e \& \sim x \leqslant y \text {. }
$$

Here v denotes a (one-dimensional) array, store (v, i, e) denotes the array with i-th component e and with j-th component select (v, j) for $j \neq i$ and select (v, j) denotes the element at location j in the array v. F is an RUA-formula. Splitting the formula into its homogeneous parts we obtain

$$
\begin{array}{lc}
F_{A} & F_{R} \\
\operatorname{select}(\operatorname{store}(v, i, e), j)=x & \sim x \leqslant e \\
\operatorname{select}(v, j)=y & \sim x \leqslant y
\end{array}
$$

Both formulas are satisfiable and none of the two conjunctions entails an equality between variables. Therefore propagation of equalities
does not yield an inconsistency although the original formula is unsatisfiable. However, the conjunction F_{A} implies a disjunction of equalities between variables, namely $x=e \quad v x=y$. In this situation case-splitting is required. Each equality appearing in the disjunction is adjoined to F_{R} alone. First, we add $x=e$ as a new conjunct to F_{R} and $S(R)$ returns "unsatisfiable". Then we add $x=y$ to F_{R} and again $S(R)$ returns "unsatisfiable". In both cases $S(R)$ has detected an inconsistency, thereby showing that the original formula is unsatisfiable. We are ready now to formulate the general equality propagation procedure.

2.3. The Equality Propagation Procedure

Let S and T be disjoint, decidable, stably-infinite, quantifierfree theories. (A theory is called stably-infinite if any quantifierfree formula in the theory has an infinite model if it has any model). Thus S and T have no common nonlogical symbols. Suppose furthermore, that we are given satisfiability procedures for both S and T. Besides, we presuppose that the satisfiability procedures have the additional ability to determine whether an equality $x=y$ between variables follows from the input formula F. This is no restriction since deciding whether $x=y$ follows from F is equivalent to determining whether $F \& x \neq y$ is unsatisfiable (and each satisfiability procedure can do this). However, this method is very costly and for specific satisfiability procedures better methods of detecting equalities between variables can be found. We will describe a method, called equality propagation, which combines the satisfiability procedures for S and T into a satisfiability procedure for the combination SUT of S and T. We describe the method for the combination of two theories but the algorithm can easily be generalized to more than two theories. The method is due to Ne 1 son and Oppen [18].
"mula is ction of ituation junction - F_{R} and in $S(R)$ sted an iula is equality
itifier-itifiermodel). lermore, and T . ave the between riction !rmining ocedure pecific alities
called res for sT of S ies but es. The

Equality propagation procedure

Input: F, a conjunction of SUT-literals.
Output: "Unsatisfiable" if F is unsatisfiable (in SUT), "satisfiable" otherwise.

Method: We make use of the procedure split(F) described below. The algorithm is as follows.

1. $\left(F_{S}, F_{T}\right):=s p l i t(F)$.
2. Using the satisfiability procedures for S and T respectively decide whether F_{S} or F_{T} is unsatisfiable. If either F_{S} or F_{T} is unsatisfiable return "unsatisfiable".
3. [Equality propagation] If either F_{S} or F_{T} implies some equality between variables not implied by the other, then add the equality as a new conjunct to the one that does not imply it. Go to step 2.
4. [Case split necessary] If either F_{S} or F_{T} implies a disjunction $u_{1}=v_{1} v \ldots . . v u_{n}=v_{n}$ of equalities between variables, without implying one of the equalities alone, then apply the procedure recursively to the n formulas $F_{S} \& F_{T} \& u_{1}=v_{1}$, ..., $F_{S} \& F_{T} \& u_{n}=v_{n}$. If any of these formulas are satisfiable, return "satisfiable". Otherwise return "unsatisfiable".
5. Return "satisfiable".

Splitting a formula into its homogeneous parts

Input: F, a conjunction of $S \cup T-l i t e r a l s$.
Output: A pair of formulas ($\mathrm{F}_{\mathrm{S}}, \mathrm{F}_{\mathrm{T}}$) such that F_{S} is a conjunction of S-literals, F_{T} a conjunction of T-literals and F is satisfiable if and only if $F_{S} \& F_{T}$ is satisfiable.

Method: The heart of the method is to replace terms of the wrong type by new variables. The algorithm uses the procedure tsymbol(F). $L(S)$ denotes the language of a theory S, lit(F) denotes the set of literals ocurring in F. The algorithm is as follows.

```
split(F):
    FS:=true
FT:=true
while lit(F)\not=\varnothing do
    begin
        select G&lit(F)
```



```
        p:=tsymbol (G)
        wlg assume peL(S)
            otherwise interchange S and T in
                begin
                    G':=G
                    while G' contains some subterm t which is not
                    an S-term do
                begin
                    G':=result of replacing each occurence
                        of }t\mathrm{ in }G\mathrm{ by a new variable v
                    lit(F):=lit(F)\cup{v=t}
                end
                    add G' as new conjunct to FS
                    end
        end
return ( }\mp@subsup{F}{S}{},\mp@subsup{F}{T}{}\mathrm{ )
```

tsymbol (F)

$$
\begin{aligned}
& \text { if } F=p\left(t_{1}, \ldots t_{n}\right) \\
& \text { then } p \\
& \text { elseif } F=\sim G \\
& \text { then } t s y m b o l(G)
\end{aligned}
$$

19 type 201(F). set of

2.4.Analysis of the Algorithm

The complexity of the algorithm depends on the complexity of the individual decision algorithms and is dominated by the maximum of the complexities of the satisfiability procedures for S and for T. Detailed results may be found in Oppen [20].

The equality propagation in step 3 may be realized as follows. Take an equality $x=y$ and determine whether it follows from F_{S} or F_{T}. If it follows from one formula but not from the other add it to the one which does not imply it. Otherwise take some other equality and repeat the process. The process terminates since there is only a finite number of equalities between variables. In practice more efficient methods of propagating equalities are possible. Specific methods depend on the particular theories under consideration.

A similar strategy is applicable in step 4 since there are also only finitely many disjunctions of equalities between variables. Step 4 is very costly and the fact whether case-splitting is required or not plays an important role. Case-splitting may only be caused by socalled non-convex formulas. A formula is called non-convex if it implies some disjunction of equalities between variables $u_{1}=v_{1} v \ldots v$ $u_{n}=v_{n}$ without implying one of the equalities alone, otherwise a formula is called convex. A theory S is called convex if every conjunction of s -literals is convex. If we combine convex theories case-splitting is not required. It might also be fruitful to analyze whether certain strategies of selecting the disjunctions minimize the expenses for case-splitting.

In Chapter 3 and Chapter 4, respectively, we will prove that the theories R and E are convex. The example in Section 2.2. shows that A is non-convex.

Opppen [20] proves that if S and T are convex (quantifier-free theories with polynomial satisfiability problems, then testing the satisfiability of a conjunction of SuT-literals, by using the method described above, also requires polynomial time.

2.5. Correctness of the Procedure

In this section we give a proof of correctness of the procedure. Our proof is based on Robinson's Consistency Theorem and is simpler than the proof given by Nelson and Oppen [18]. Besides, Lemma 1 in Nelson and Oppen [18, p.253] is not correct.

The algorithm always terminates since each repetition of step 3 or recursive call in step 4 adjoins an equality to either F_{S} or F_{T} which was not a logical consequence of the formula before. This can happen at most $n-1$ times where n is the number of variables appearing in F_{S} or F_{T} initially.

It is clear that the procedure is correct if it returns "unsatisfiable". We have to prove that the procedure is also correct if it returns "satsifiable". The proof requires the lemma given below.

A parameter of a formula F is any nonlogical symbol which occurs in F or any variable which occurs free in F. For example, the parameters of $x \leqslant y \vee \exists z: f(z) \leqslant g(z)$ are x, y, f, g and \leqslant. A formula is called simple if its only parameters are variables. For example, $x=y \vee y \neq z$ and $\exists x: x \neq y$ are simple formulas but $x \leqslant y$ and $\exists x: f(x)=x$ are not. An unquantified simple formula is a propositional formula whose atomic formulas are equalities between variables. The next lemma characterizes quantified simple formulas.

Lemma 1: Let F be a quantified simple formula. Then there is some unquantified simple formula G such that F and G are equivalent in each infinite interpretation I. G may be chosen so that $V(G) \subset V(F) .(V(G)$ denotes the set of all nonlogical symbols which occur in G).

Proof: Suppose F is of the form $\exists x: H$, where H is a formula such that the variable x occurs free in H. Let H^{\prime} be the formula resulting
that Iting
from H by first replacing each equality $x=x$ by "true" and replacing each negation of an equality $x \neq x$ by "false", and by replacing any remaining equality involving x by "false". Let F ' be the formula $\left(H^{\prime} \vee H\left[x / v_{1}\right] \vee \ldots v H\left[x / v_{n}\right]\right)$, where $v:=\left\{v_{1}, \ldots v_{n}\right\}=$ $V(F)-\{x\}$. (Note that replacing x by some other variable v_{i} may cause some bounded occurence of v_{i} to be renamed. This does not effect the considerations below).
We claim that F and F^{\prime} are equivalent in each infinite interpretation I. The proof proceeds in two steps:

1) We show that every infinite model of F is a model of F^{\prime}. Assume that I is a model of F (abbreviated by I F) and that I is infinite. We have
$\models_{I} F$ iff ${ }_{\mathrm{I}} \exists \mathrm{x}: \mathrm{H}$ iff for some element a in the universe $\Longleftarrow I \prime H$, where I^{\prime} is such that $I(y)=I^{\prime}(y)$ for $y \neq x$ and $I(x)=a$.
We distinguish two cases:
a) $I^{\prime}\left(v_{i}\right)=I^{\prime}(x)$ for some i, such that $1 \leqslant i \leqslant n$.

Then $F I^{\prime} H$ implies that $\rightleftharpoons I^{\prime} H\left[x / v_{i}\right]$. Since $I(v)=I^{\prime}(v)$ for all variables in $H\left[x / v_{j}\right]$ we get $F I H\left[x / v_{j}\right]$. The assertion F^{\prime} follows immediately.
b) $I^{\prime}(x) \neq I^{\prime}\left(v_{j}\right)$ for all i, such that $1 \leqslant i \leqslant n$.

In this case we can show that $\Longleftarrow I^{\prime} H^{\prime}$ which again yields $\models_{I} F^{\prime}$.
2) We now show that every infinite model of F^{\prime} is a model of F. Assume that I is an infinite model of F^{\prime}. Again we distinguish two cases in order to show that I satisfies F.
a) $\equiv I H\left[x / v_{i}\right]$ for some i, such that $l \leqslant i \leqslant n$.

Define $I^{\prime}(y):=I(y)$ for $y \neq x$ and $I^{\prime}(x):=I\left(v_{i}\right)$. It is readily seen that I^{\prime} satisfies H. This implies that I satisfies $\exists x: H$ since I^{\prime} differs from I on $l y$ in x.
b) Assume that H^{\prime} is valid in I.

Define $I^{\prime}(y):=I(y)$ for $y \neq x$ and $I^{\prime}(x):=a$, where a is such that $I\left(v_{i}\right) \neq a$, for $a l l i$ such that $l \leqslant i \leqslant n$. It is possible to select such an element a because the universe is infinite. Looking at the definition of H^{\prime} it is easily seen that I^{\prime} is a model for H. Thus I is a model for F.

By repeatedly eliminating quantifiers in that manner we eventually obtain a simple quantifier-free formula G which is equivalent to in each infinite interpretation and has the additional propert, that $V(G) \subset V(F)$.

The proof of correctness is based on the following theorem.

Theorem 2: (Robinson's Consistency Theorem)
Let F_{1} and F_{2} be formulas. $F_{1} \& F_{2}$ is unsatisfiable if and only there is some formula A such that $V(A) \subset V\left(F_{1}\right) \cap V\left(F_{2}\right)$ and F_{1} 三 A and $F_{2} \models \sim A$.

For a proof of the theorem see Hermes [12, chapter VIII].
We now complete the proof of correctness. First consider the case that the procedure returns "satisfiable" from step 5 . This signifies that F_{S} and F_{T} are both satisfiable and convex and imply the same equalities between variables. Assume that $F_{S} \& F_{T}$ is unsatisfiable. By Theorem 2 there must be some formula A such that $F_{S} \models A, F_{T} \vDash \sim A$ and $V(A) \subset V\left(F_{S}\right) \cap V\left(F_{T}\right): S$ and T are disjoint theories. Therefore A is a simple formula. (Hence we know that A contains only variables). In any infinite model A is equivalent to A^{\prime}, where A^{\prime} is unquantified and $V\left(A^{\prime}\right)<V:=V\left(F_{S}\right) \cap V\left(F_{T}\right)$ (by Lemma 1).

Define $E_{1}:=\left\{x=y: x \varepsilon V, y \varepsilon V, x=y\right.$ follows from $\left.F_{S}\right\}$ and $E_{2}:=\{x \neq y: x \varepsilon V$, $y \varepsilon V, x=y$ does not follow from $\left.F_{S}\right\}$. Let E be the conjunction of all literals in E_{1} and E_{2}, and let E^{\prime} be the conjunction of all literals in E_{2}. We claim that either A^{\prime} follows from E or $\sim A^{\prime}$ follows from E and that both F_{S} \& E^{\prime} and F_{T} \& E^{\prime} are satisfiable.

First we prove that either A^{\prime} or $\sim A^{\prime}$ follows from E. We "evaluate" A^{\prime} by replacing any literal of E_{1} or E_{2} by "true" and any other literal by "false". In that way we can decide whether $E \vDash A^{\prime}$ or $E \vDash \sim A^{\prime}$. Without loss of generality we assume that $E=A^{\prime}$.

Next we prove that FS \& E' is satisfiable, the assertion that F_{T} \& E^{\prime} is satisfiable is handled analogously. Assume that F_{S} \& E^{\prime} is unsatisfiable. This is equivalent to saying that $F_{S} \vDash \sim E^{\prime}$, or otherwise stated that $F_{S} \vDash \sim\left(v_{1} \neq u_{1} \& \ldots \& v_{k} \neq u_{k}\right)$, where the literals $v_{i} \neq u_{i}$ are the literals in E^{\prime}. We transform this further and get
$: \quad x \varepsilon V$, of all als in E and

Tuate"
other A^{\prime} or
that
E^{\prime} is
or
zerals d get
$F_{S} \vDash\left(v_{1}=u_{1} \vee \ldots v v_{k}=u_{k}\right)$. Since F_{S} is convex there has to be some i such that $1 \leqslant i \leqslant k$ and $F_{S}=v_{i}=u_{i}$. This is a contradiction, thus F_{S} \& E^{\prime} has to be satisfiable.
S and T are stably-infinite theories. Thus there are infinite models I and J for $F_{S} \& E$ and $F_{T} \& E$ respectively. From $E \neq A^{\prime}$ we obtain that J satisfies A^{\prime}, but this contradicts that J satisfies $\sim A$. Therefore $F_{S} \& F_{T}$ has to be satisfiable.

By induction on the depth of recursion it follows that the procedure is correct if it returns "satisfiable" from step 4. This completes the proof of correctness.

2.6. Implementation of the Procedure

The procedure has been implemented in Standard LISP on a IBM 370/155. The current implementation employs decision procedures for the quantifier-free theory of arithmetic under addition and order and for the quantifier-free theory of equality with uninterpreted function symbols. These decision procedures are described in Chapter 3 and Chapter 4, respectively. In Chapter 6 examples are given which illustrate the use of the procedure. The appendix contains a documentation of the LISP programs.

