Problems Solved:

6	7	8	9	10

Name:

Matrikel-Nr.:

Problem 6. Let $N=(Q, \Sigma, \delta, S, F)$ be the NFSM given by $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, $\Sigma=\{0,1\}, S=\left\{q_{0}\right\}, F=\left\{q_{1}, q_{2}\right\}$, and the transition function $\delta: Q \times \Sigma \rightarrow P(\Sigma)$ where $\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\}, \delta\left(q_{0}, 1\right)=\left\{q_{0}, q_{2}\right\}$, and $\delta(q, \sigma)=\emptyset$ for $q \in\left\{q_{1}, q_{2}\right\}$ and all $\sigma \in \Sigma$. Construct a DFSM D such that $L(N)=L(D)$. Hint: Use the Subset Construction, cf. Section 2.2 in the lecture notes.

Problem 7. Let the DFSM $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given by $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, $\Sigma=\{0,1\}, F=\left\{q_{1}, q_{2}\right\}$ and the following transition function $\delta: Q \times \Sigma \rightarrow Q$:

Construct a minimal DFSM D such that $L(M)=L(D)$ using Algorithm Minimize. (cf. Section 2.3 Minimization of Finite State Machines)

Problem 8. Construct a nondeterministic finite state machine for:

1. the language L_{1} of all strings over $\{0,1\}$ that contain 001 as a substring.
2. the language L_{2} of all strings over $\{0,1\}$ that contain the letters $0,0,1$ in exactly that order. (Note that before, in between and after these three letters any number of other letters may occur).

Your two machines must not use more than 4 states. Moreover, they should only differ in their transition functions. Draw their transition graphs.

Problem 9. Construct a deterministic finite state machine M over $\Sigma=\{0,1\}$ such that $L(M)$ consists of all words that do not contain the string 01. Hint: Start by constructing a nondeterministic finite state machine N that recogizes the words that do contain the string 01. Proceed by converting your nondeterministic machine N to a deterministic machine D that accepts the same language. Now you are left with the task of coming up with a machine M whose language is precisely the complement of the language of D. This can by done by a small modification of D.

Problem 10. What language is accepted by the DFSM depicted below? Describe that language in your own words or, alternatively, by a regular expression.

